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There is a glaring contradiction, duly noted in [1], between ubiquity of transmission of classical 

information in everyday life, and multitude of no-go theorems, such as no-cloning [2, 3, 4], no-

teleportation [5], no-broadcasting [6], no-communication [7], no-signaling [8], which disallow 

information, contained in arbitrary state, from being copied. The unfeasibility could be ascertained 

multiple ways: 

• Suppose there is a linear operator 𝑼 able to clone an arbitrary normalized state 𝑨 over target 

𝑺: 𝑼|𝑨𝑺⟩ = |𝑨𝑨⟩. Since state 𝑨 is arbitrary, operator 𝑼 is also able to clone orthogonal to 

𝑨 normalized state 𝑩: 𝑼|𝑩𝑺⟩ = |𝑩𝑩⟩, as well as normalized state 𝝍 = 𝛼𝑨 + 𝛽𝑩: 

𝑼|𝝍𝑺⟩=|𝝍𝝍⟩=𝛼2|𝑨𝑨⟩+𝛽2|𝑩𝑩⟩ + 𝛼𝛽|𝑨𝑩⟩ + 𝛽𝛼|𝑩𝑨⟩. From linearity of 𝑼: 𝑼|𝝍𝑺⟩ =

𝛼|𝑨𝑨⟩+𝛽|𝑩𝑩⟩ ⟹ 𝛼2|𝑨𝑨⟩+𝛽2|𝑩𝑩⟩ + 𝛼𝛽|𝑨𝑩⟩ + 𝛽𝛼|𝑩𝑨⟩ = 𝛼|𝑨𝑨⟩+𝛽|𝑩𝑩⟩. Taking 

scalar product with ⟨𝑨𝑨| of both sides of last equation, I obtain 𝛼2 =  𝛼 which is only 

possible if 𝛼 = 1 or 0. Thus, operator 𝑼 is not able to clone an arbitrary state. In particular, 

it is not able to copy state 𝝍 = 𝛼𝑨 + 𝛽𝑩, where 𝛼, 𝛽 ≠ 0,1. Also, contrary to statement “a 

cloning device can only clone states which are orthogonal” on page 532 [1], it is easy to 

see that it is not able to clone orthogonal to 𝝍 = 𝛼𝑨 + 𝛽𝑩 state 𝝓 = 𝛼|𝛽 𝛼⁄ |𝑨 − 𝛽|𝛼 𝛽⁄ |𝑩 

• Cloning of arbitrary state would enable measurement, i.e., extraction of classical 

information, to be performed on replicas without destroying the original state. Such 

proposition is impossible in quantum theory 

Could it be that cloning is possible for particular states, such as eigenstates of measuring device? 

It is widely assumed (see, e.g., exercise 12.1 in [1]), that such states can be easily cloned via 

quantum channel. As I show below, that is also not the case. 

• If 𝑨 and 𝑩 are eigenstates of measuring device, they are unitarity equivalent to superposed 

normalized states 𝝍 = 𝛼𝑨 + 𝛽𝑩, and 𝝓 = 𝛼|𝛽 𝛼⁄ |𝑨 − 𝛽|𝛼 𝛽⁄ |𝑩. Namely, there exist 

unitary transformation 𝑽, such that 𝑨 = 𝑽𝝍 and 𝑩 = 𝑽𝝓. If we assume there exists linear 

operator 𝑼 able to copy 𝑨 over target 𝑺: 𝑼|𝑨𝑺⟩ = |𝑨𝑨⟩, then 𝑼|𝑨𝑺⟩ = 𝑼|𝑽𝝍𝑺⟩ = |𝑨𝑨⟩ =

|𝑽𝝍, 𝑽𝝍⟩ ⟹ 𝑼𝑽|𝝍𝑺⟩ = 𝑽𝑽|𝝍𝝍⟩. Thus, based on our assumption, there exists linear 

operator 𝑼′ = 𝑽†𝑽† 𝑼𝑽 able to copy state 𝝍 = 𝛼𝑨 + 𝛽𝑩 over target 𝑺: 𝑼′|𝝍𝑺⟩=|𝝍𝝍⟩, 

which has been proven impossible above. 

This result may seem controversial, as eigenstates of measuring device are classical, in a sense, 

they are not destroyed by measurement, and therefore, can be cloned. However, no-go theorems 

and ascertainment in previous paragraph only apply to cloning via quantum channel, i.e., via 

unitary operation, not via classical channel. It has been shown [9], no information is transmitted 

via quantum channel. Hence, no cloning is possible via quantum channel only. Teleportation or 

cloning always involves transmission of information via classical channel. Then, what exactly is 

classical channel? That is the question I answer in this paper. 

Consider a generic setup with Alice sending a message to Bob. The available operations are 

unitary transformation, which preserves both quantum and classical information, and 



measurement, which converts quantum information into classical. There must be a shared state to 

perform these operations on. Consider a basic shared state of two entangled qubits, one accessible 

to Alice and another accessible to Bob: 

 𝜳 = (|𝝍𝒖⟩ + |𝝓𝒗⟩) √2⁄   ;       𝝆 = |𝜳⟩⟨𝜳| (1) 

Here 𝝍, 𝝓 are Alice’s entangled qubit states, and 𝒖, 𝒗 are Bob’s qubit states. For |𝝍𝒖⟩ and |𝝓𝒗⟩ 

in (1) to be orthogonal, I consider 𝝍, 𝝓 normalized, but not necessarily orthogonal, and 𝒖, 𝒗 

normalized and orthogonal: 

 ⟨𝝍|𝝍⟩ = 1 ;   ⟨𝝓|𝝓⟩ = 1 ;  ⟨𝝍|𝝓⟩ ≠ 0 ;  ⟨𝒖|𝒖⟩ = 1 ;   ⟨𝒗|𝒗⟩ = 1 ;  ⟨𝒖|𝒗⟩ = 0  

The amount of information extracted from shared state with measurement performed by Alice is 

given by Von Newmann’s entropy 𝐻𝐴 = −𝑇𝑟(𝝆𝐴 log2 𝝆𝐴) 𝑏𝑖𝑡𝑠 𝑒𝑣𝑒𝑛𝑡⁄ , where 𝝆𝐴 is shared state 

with Alice’s part traced out: 

𝝆𝐴 = 𝑇𝑟𝐴(𝝆) = (|𝒖⟩⟨𝒖| + ⟨𝝓|𝝍⟩|𝒖⟩⟨𝒗| + ⟨𝝍|𝝓⟩|𝒗⟩⟨𝒖| + |𝒗⟩⟨𝒗|) 2⁄ (2) 

𝐻𝐴 = −𝑇𝑟(𝝆𝐴 log2 𝝆𝐴) =

1 −
(1 + |⟨𝝓|𝝍⟩|)

2
log2(1 + |⟨𝝓|𝝍⟩|) −

(1 − |⟨𝝓|𝝍⟩|)

2
log2(1 − |⟨𝝓|𝝍⟩|)  𝑏𝑖𝑡𝑠 𝑒𝑣𝑒𝑛𝑡⁄

 

, with |⟨𝝓|𝝍⟩|2 = 1 − 4 ∙ 𝑑𝑒𝑡(𝝆𝐴), |⟨𝝓|𝝍⟩| being the length of Bloch vector [10, 11]. Product 

⟨𝝓|𝝍⟩ tells how reliably can Alice’s device distinguish 𝝍 and 𝝓 states. If ⟨𝝓|𝝍⟩ = 0, then 𝝍, 𝝓 

are perfectly distinguishable, i.e., orthogonal, in Alice’s measurement basis. In this case, 𝐻𝐴 =

1 𝑏𝑖𝑡𝑠/𝑒𝑣𝑒𝑛𝑡. If ⟨𝝓|𝝍⟩ ≠ 0, Alice’s device cannot perfectly distinguish 𝝍, 𝝓 states, as in case, 

e.g., when 𝝍 and 𝝓 are horizontal and vertical polarizations of a photon, with non-ideal PBS 

(polarizing beam splitter) used to separate them (Figure 1 in [10]). In this case 𝐻𝐴 < 1 𝑏𝑖𝑡𝑠/𝑒𝑣𝑒𝑛𝑡. 

In particular, if |⟨𝝓|𝝍⟩| = 1, then 𝐻𝐴 = 0. Thus, the amount of information extracted by Alice 

depends on orthogonality of entangled Alice’s states. 

If Bob’s measurement basis is 𝒖, 𝒗, then expectation value ⟨𝑿𝐵⟩ of Bob’s measurement 

operator 𝑿𝐵 = 𝑋𝑢|𝒖⟩⟨𝒖| + 𝑋𝑣|𝒗⟩⟨𝒗| is: ⟨𝑿𝐵⟩ = 𝑇𝑟(𝑿𝐵𝝆) = 𝑇𝑟(𝑿𝐵𝝆𝐴) = (𝑋𝑢 + 𝑋𝑣) 2⁄ . It does 

not depend on Alice’s measurement, as stipulated by no-communication and no-signaling 

theorems [7, 8]. However, if Bob chooses to do his measurement in 𝟎, 𝟏 basis, wherein |𝒖⟩ =

|𝟎⟩⟨𝟎|𝒖⟩ + |𝟏⟩⟨𝟏|𝒖⟩ and |𝒗⟩ = |𝟎⟩⟨𝟎|𝒗⟩ + |𝟏⟩⟨𝟏|𝒗⟩, then from (2) we would have: 

𝝆𝐴 =
1

2
(|⟨𝟎|𝒖⟩|2 + |⟨𝟎|𝒗⟩|2 + ⟨𝝓|𝝍⟩⟨𝒗|𝟎⟩⟨𝟎|𝒖⟩ + ⟨𝝍|𝝓⟩⟨𝒖|𝟎⟩⟨𝟎|𝒗⟩)|𝟎⟩⟨𝟎| +

1

2
(⟨𝟎|𝒖⟩⟨𝒖|𝟏⟩ + ⟨𝟎|𝒗⟩⟨𝒗|𝟏⟩ + ⟨𝝓|𝝍⟩⟨𝟎|𝒖⟩⟨𝒗|𝟏⟩ + ⟨𝝍|𝝓⟩⟨𝟎|𝒗⟩⟨𝒖|𝟏⟩)|𝟎⟩⟨𝟏| +

1

2
(⟨𝟏|𝒖⟩⟨𝒖|𝟎⟩ + ⟨𝟏|𝒗⟩⟨𝒗|𝟎⟩ + ⟨𝝓|𝝍⟩⟨𝟏|𝒖⟩⟨𝒗|𝟎⟩ + ⟨𝝍|𝝓⟩⟨𝟏|𝒗⟩⟨𝒖|𝟎⟩)|𝟏⟩⟨𝟎| +

1

2
(|⟨𝟏|𝒖⟩|2 + |⟨𝟏|𝒗⟩|2 + ⟨𝝓|𝝍⟩⟨𝒗|𝟏⟩⟨𝟏|𝒖⟩ + ⟨𝝍|𝝓⟩⟨𝒖|𝟏⟩⟨𝟏|𝒗⟩)|𝟏⟩⟨𝟏| (3)

 

To simplify (3), consider |𝒖⟩ = (|𝟎⟩ + |𝟏⟩) √2⁄ , and |𝒗⟩ = (|𝟎⟩ − |𝟏⟩) √2⁄ . With that: 



𝝆𝐴 =
1

2
(1 + 𝑅𝑒⟨𝝓|𝝍⟩)|𝟎⟩⟨𝟎| −

𝑖

2
𝐼𝑚⟨𝝓|𝝍⟩|𝟎⟩⟨𝟏| +

𝑖

2
𝐼𝑚⟨𝝓|𝝍⟩|𝟏⟩⟨𝟎| +

1

2
(1 − 𝑅𝑒⟨𝝓|𝝍⟩)|𝟏⟩⟨𝟏| (4)

 

, where 𝑅𝑒⟨𝝓|𝝍⟩ and 𝐼𝑚⟨𝝓|𝝍⟩ are real and imaginary parts of ⟨𝝓|𝝍⟩. 

The expectation value of Bob’s measurement operator 𝑿𝐵 = 𝑋0|𝟎⟩⟨𝟎| + 𝑋1|𝟏⟩⟨𝟏| in 𝟎, 𝟏 basis is: 

⟨𝑿𝐵⟩ = 𝑇𝑟(𝑿𝐵𝝆) = 𝑇𝑟(𝑿𝐵𝝆𝐴) =
𝑋0 + 𝑋1

2
+

𝑋0 − 𝑋1

2
𝑅𝑒⟨𝝓|𝝍⟩ (5) 

As transpired, Alice can alter expectation value (5) of Bob’s measurement by tuning 

(modulating) her own measuring device (transmitter), i.e., by controlling ⟨𝝓|𝝍⟩ product. This 

mechanism, involving modulation of transmitter, and measurement of the reduced shared state by 

receiving device, constitutes classical communication channel. The actual results of any 

measurement are not transmitted. It underscores the absoluteness of classical information [10], in 

that information can only be extracted once, and cannot be re-extracted again from any state or 

“channel”. To illustrate the point, consider a shared entangled state 𝝆 of 𝑨 and 𝑩 [qubits, qdits], 

accessible respectively, to Alice and Bob. It’s not too difficult to see that reduced states 𝝆𝐴 =

𝑇𝑟𝐴(𝝆) and 𝝆𝐵 = 𝑇𝑟𝐵(𝝆) are unitarily equivalent, i.e.,  ∃𝑼, such that 𝝆𝐵 = 𝑼𝝆𝐴𝑼†; 𝑼𝑼† = 𝑰. In 

case of (1), it is obvious from diagonal form of 𝝆𝐴 and 𝝆𝐵: 

𝑑𝑖𝑎𝑔(𝝆𝐴) = 𝑑𝑖𝑎𝑔(𝝆𝐵) =
1

2
(1 + |⟨𝝓|𝝍⟩|)|𝟎⟩⟨𝟎| +

1

2
(1 − |⟨𝝓|𝝍⟩|)|𝟏⟩⟨𝟏| 

The shared state [of entangled qubits] is a crucial element of any communication. Such state 

could be the output state of higher cardinality (𝑀 > 2) measurement operator, encoded in 𝑀 − 1 

entangled qubits [12]. Entangled qubits make up elements of objective reality, which transmitter 

and receiver are parts of. The transmitter must be in correlated (entangled) relationship with the 

receiver for communication to work, thuswise objective reality to be observable [13]. 

Alice’s or Bob’s measurement reduces shared state (1) to unitarily equivalent 𝝆𝐴 or 𝝆𝐵. Yet, 

if Alice’s and Bob’s devices are spacetime separated, their measurement operators are not unitarily 

equivalent. It is obvious from spacetime (𝑡, 𝒓) = (𝑡, 𝑥, 𝑦, 𝑧) parameterization of qubit operator: 

𝑿 = 𝑡 ∙ 𝑰 + (𝒓 ∙ 𝝈). A change in 𝑡 and/or 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 would result in a change to 

eigenvalues [𝜖1  ;   𝜖2] = [𝑡 + 𝑟   ;   𝑡 − 𝑟] of 𝑿, and therefore, non-equivalent operator. The 

relationship between Hermitian operators 𝑿𝐴, 𝑿𝐵 having shared state, is intertwist  𝑽𝑿𝐴 = 𝑿𝐵𝑽, 

where 𝑽 is a linear transformation. For qubit operators, such transformation 𝑽 only exists if [10]: 

((𝑡𝐴 − 𝑡𝐵)2 − 𝒓𝐴
2 − 𝒓𝐵

2 )2 = 4𝒓𝐴
2𝒓𝐵

2 (6) 

Three non-trivial situations satisfy (6): 

1. 𝑡𝐴 = 𝑡𝐵  ;  𝒓𝐴
2 = 𝒓𝐵

2 . In this case 𝑽 is unitary; 𝑿𝐴, 𝑿𝐵 are unitarily equivalent, but not 

necessarily commuting 

2. 𝑡𝐴 ≠ 𝑡𝐵  ; (𝑡𝐴 − 𝑡𝐵)2 = (𝒓𝐴 − 𝒓𝐵)2 = 𝒓𝐴
2 + 𝒓𝐵

2 − 2(𝒓𝐴, 𝒓𝐵) ; |(𝒓𝐴, 𝒓𝐵)| = 𝑟𝐴𝑟𝐵. In this case 𝑽 

is non-unitary; 𝑿𝐴, 𝑿𝐵 are commuting, but not unitarily equivalent 



3. 𝑡𝐴 ≠ 𝑡𝐵  ;  𝑡𝐴
2 = 𝒓𝐴

2  ;  𝑡𝐵
2 = 𝒓𝐵

2 . 𝑽 is non-unitary; 𝑿𝐴, 𝑿𝐵 are not unitarily equivalent, and 

not necessarily commuting 

The outcomes of measurement by Alice and Bob on shared state implicitly incorporate 𝒄2 = 1 speed limit 

in relationship between observables:  𝒄2(𝑡𝐴 − 𝑡𝐵)2 = (𝒓𝐴 − 𝒓𝐵)2 or 𝒄2𝑡𝐴
2 = 𝒓𝐴

2  ; 𝒄2𝑡𝐵
2 = 𝒓𝐵

2  whenever 

𝑡𝐴 ≠ 𝑡𝐵. The speed limit is effectuated by Hermiticity of [qubit] measurement operators. 
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