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Abstract 
Understanding of physical reality is rooted in the knowledge obtained from 

observations. The knowledge is encoded in variety of forms, from sequence of letters in 

a book, to neural circuits in a brain. At the core, any encoded knowledge is a sample of 

correlated events (symbols). I show the event samples bear attributes of a physical 

reality: energy, temperature, momentum, mass. I show that treating measurement as 

event sampling is consistent with predictions of quantum mechanics (QM). I discuss 

QM basics: wave function, Born rule, and Schrödinger equation, emphasizing their true 

meaning, which is rarely, if ever, mentioned in textbooks. I derive similar expressions 

using event sample as base construct, demonstrating the connection between QM and 

the presented model. I explain the mechanics of observation, and the role of observer. I 

show how model extends to include dispersion, decoherence, transition from quantum 

to classical state. I prove decoherence is a key factor in Fermi’s golden rule, in Planck’s 

radiation law, and in emergence of time. The controversial aspects of QM, such as wave 

function collapse, and measurement problem, do not appear in presented framework, 

which I call the knowledge mechanics (KM) 

 

 As for prophecies, they will pass away; as for tongues, 

they will cease; as for knowledge, it will pass away. 

1 Corinthians 13:8 

 

1. PREAMBLE 

Physical properties, such as temperature, energy, entropy, pressure, and phenomena such as 

Bose-Einstein condensation are exhibited not just by “real” physical systems, but also by virtual 

entities such as binary or character strings [1, 2, 3], world wide web [4], business and citation 

networks [5], economy [6, 7]. Quantum mechanical behavior has been observed in objects as 

different as electrons, electromagnetic waves, nanomechanical oscillators [8]. There must be a 

mechanism which accounts for the grand commonality in observed behavior of vastly different 

entities. Scientists have recently discovered that various complex systems have an underlying 

architecture governed by shared organizing principles [9]. The …present-day quantum mechanics 

is a limiting case of some more unified scheme… Such a theory would have to provide, as an 

appropriate limit, something equivalent to a unitarily evolving state vector |𝜓⟩ [10]. 

There are two factors present in all theories. One is the all-pervading time, and the other is the 

observer’s mind. A successful grand commonality model must explain the nature of time, specify 

mechanism of how the physical reality projects onto the mind of observer, and relate time to that 

projection. Conventional theory routinely manipulates notions, such as energy, distance, electric 

charge, without providing their definition, treating them as God-given things. A self-contained 

model must define any notion it operates with. The definition must be confined within the model. 

A complete theory may not contain underived fundamental physical constants. The conventional 

QM provides accurate predictions, yet without clear model of the system [11]. This work describes 

a model wherein state vector formalism for correlated event samples is similar to mathematical 

apparatus of conventional QM. I expound some notions left obscure by the conventional theory, 

e.g. the notions of time, of observer, of measurement. 

In this preamble I outline the model in defined terms. In Section 2 I develop the concepts of 

energy, of knowledge, and of knowledge confidence. I calculate energy spectra for some event 

https://www.biblegateway.com/passage/?search=1%20Corinthians+13:8&version=ESV
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samples and show their similarity with known QM constructs: particle in a box, and quantum 

oscillator. In Section 3, I consider an ensemble of uncorrelated particles. I derive the notion of 

temperature, and the First Law of Thermodynamics. In Section 4, I discuss conventional QM 

approach to measurement. I apply state vector formalism to an event sample to obtain Born rule, 

and Schrödinger equation. I state the equivalence of Born rule and of coefficient of determination. I 

extend formalism to include numeric methods of handling dispersion and decoherence. I show the 

decoherence is a key factor in Fermi’s golden rule, and in Planck’s radiation formula. I show how 

decoherence leads to Second Law of Thermodynamics and to emergence of time. 

A description of quantum-level physical reality (PR) is attained as a sample {𝑛𝑖} of eigenstates 

{𝒊} ∈ 𝑮, where 𝑮 is a set of eigenstates PR can be observed in. In information terms, the eigenstate 

is an event; 𝑛𝑖 is the number of occurrences of 𝒊-th event in the sample. The acquisition of a sample 

is measurement. The sample is encoded in an information-holding construct, which I call the 

observer. The event is elementary if it is not a direct product of other events. I call event a particle, 

in some contexts. The particles are said to be entangled if they are parts of a non-elementary event. 

The event sample describes a quantum object, if events sampled in different observation bases 

are correlated. An ensemble of uncorrelated particles represents a classical object. 

I call a variation of observation basis the transformation. A transformation is correlative with 

a change in macroscopic parameters, notably time, position, etc. I call a change of eigenstate 

population numbers {𝑛𝑖}, associated with transformation, the transition. 

The quantitative measure of information (knowledge), about object, is obtained from event 

sample {𝑛𝑖}, as a difference between entropy of equilibrium (maximum probability state), and 

entropy of statistical ensemble {𝑛𝑖}. The calculation is based on understanding of entropy as a 

measure of missing information (i.e. the amount of unknown). The sum of knowledge (i.e. the 

amount of known), and amount of unknown equals entropy of equilibrium. 

All graphs have been pushed to the end of the paper to make text part more focused. This paper 

is a substantial re-write of its predecessor [12], most significantly in Section 4. 

 

2. ENERGY 

The unconditional probability of an event sample {𝑛𝑖} is given by multinomial probability 

mass function (pmf): 

𝑃((𝑛𝑖);  𝑁, (𝑝𝑖)) = 𝑁! ∏
𝑝𝑖

𝑛𝑖

𝑛𝑖!
𝒊∈𝑮

 (1) 

, where 𝑝𝑖 is the probability of sampling eigenstate 𝒊 from set 𝑮. The elementary eigenstates would  

have equal probability: 
𝑝𝑖 = 1

𝑀⁄    ∀  𝒊 ∈ 𝑮 (2) 

, where 𝑀 is the cardinality of set 𝑮. I introduce functions ℰ, 𝜇 as follows: 

ln 𝑃((𝑛𝑖);  𝑁, (𝑝𝑖)) = 𝜇(𝑁, (𝑝𝑖)) − ℰ((𝑛𝑖);  𝑁, (𝑝𝑖)) (3) 

𝜇(𝑁, (𝑝𝑖)) = ln 𝑃((𝑛𝑖 ≡ 𝑁 ∙ 𝑝𝑖);  𝑁, (𝑝𝑖)) = 𝐻Ω(𝑁, (𝑝𝑖)) − 𝑁 ∙ 𝐻𝑆((𝑝𝑖)) (4) 

𝐻Ω(𝑁, (𝑝𝑖)) = 𝐻Ω(𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚) = ln Γ(𝑁 + 1) − ∑ ln Γ(𝑁𝑝𝑖 + 1)

𝑖∈𝑮

 (5) 

ℰ((𝑛𝑖);  𝑁, (𝑝𝑖)) = 𝜇(𝑁, (𝑝𝑖)) − ln 𝑃((𝑛𝑖);  𝑁, (𝑝𝑖)) = 

∑ [ln
Γ(𝑛𝑖 + 1)

Γ(𝑁𝑝𝑖 + 1)
+ (𝑁𝑝𝑖 − 𝑛𝑖) ∙ ln 𝑝𝑖]

𝑖∈𝑮

 
(6) 

https://en.wikipedia.org/wiki/Direct_product


ℰ((𝑛𝑖 = 𝑁𝑝𝑖 ∀  𝒊 ∈ 𝑮);  𝑁, (𝑝𝑖)) = 0 (7) 

, where Γ(𝑥) is gamma function; 𝐻S((𝑝𝑖)) = [𝐻Ω(𝑁, (𝑝𝑖)) 𝑁⁄ ]
𝑁→∞

= − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑖∈𝑮

 (8) 

Here 𝐻S((𝑝𝑖)) is Shannon’s [13] unit entropy, and 𝐻Ω(𝑁, (𝑝𝑖)) is the entropy of equilibrium.  

With (4-6), I rewrite (1) as 
𝑃((𝑛𝑖);  𝑁, (𝑝𝑖)) = 𝑒𝑥𝑝 (𝜇(𝑁, (𝑝𝑖)) − ℰ((𝑛𝑖); 𝑁, (𝑝𝑖))) (9) 

From (9), the probability of an event sample {𝑛𝑖}, among all samples of the same size 𝑁, is 

determined solely by the value of ℰ((𝑛𝑖); 𝑁, (𝑝𝑖)). If I’m to use ℰ as a single independent variable,  

I can write (9) in ℰ domain as: 
𝑃(ℰ; 𝑁, (𝑝𝑖)) = 𝑔(ℰ; 𝑁, (𝑝𝑖)) ∙ 𝑒𝑥𝑝(𝜇(𝑁, (𝑝𝑖)) − ℰ) (10) 

Here 𝑔(ℰ; 𝑁, (𝑝𝑖)) is the multiplicity (degeneracy) of the given ℰ value1, i.e. a number of ways 

the same value of ℰ is realized by different samples with given parameters 𝑁, (𝑝𝑖). There is no 

analytic expression for 𝑔(ℰ; 𝑁, (𝑝𝑖)), however, it is numerically computable. Table 1 contains ℰ, 

𝑔(ℰ; 𝑁, (𝑝𝑖)) values calculated for several sets of parameters 𝑁, (𝑝𝑖). Figures 1-2 show distinct 

values of ℰ in increasing order for several values of parameter 𝑁 and probabilities (2) calculated 

from (6), using algorithm [14] for finding partitions {𝑛𝑖} of integer 𝑁 into ≤ 𝑀 parts [15]. The 

sum of 𝑔(ℰ; 𝑁, (𝑝𝑖)) over all distinct values of ℰ is the total number of distinct samples. It is equal 

to the number of ways to distribute 𝑁 indistinguishable balls into 𝑀 distinguishable cells: 

𝐹(𝑁, 𝑀) = ∑ 𝑔(ℰ; 𝑁, (𝑝𝑖))
{ℰ}

=
(𝑁 + 𝑀 − 1)!

𝑁! (𝑀 − 1)!
 (11) 

, where sum is over all distinct values of ℰ. Figure 3 shows the total number 𝐹(𝑁, 𝑀) of distinct 

event samples, and the total number of distinct values {ℰ} as functions of 𝑁 for two sets of 

probabilities (2), calculated from (11) and (6) using algorithm [14]. The graphs demonstrate that: 

• For probabilities (2), the average degeneracy of {ℰ} levels 〈𝑔〉𝑁→∞ = 𝑀! 

This statement can be expressed as: 
𝑀! ∙ lim

𝑁→∞
∑ 1
{ℰ}

=
(𝑁 + 𝑀 − 1)!

𝑁! (𝑀 − 1)!
 (12) 

Here ∑ 1{ℰ}  sum represents the number of distinct values of ℰ for the given parameters 𝑁, 𝑀. 

𝑔(ℰ; 𝑁, (𝑝𝑖)) can exceed 𝑀! in some cases. E.g. 𝑔(ℰ = 8.0731; 𝑁 = 50, 𝑝{𝑖} = 1/3) = 12 

because ℰ({𝑛𝑖} = {29,15,6}; 50,3) = ℰ({𝑛𝑖} = {30,13,7}; 50,3) = 8.0731. Another example is, 

ℰ({𝑛𝑖} = {10,3,2}; 15,3) = ℰ({𝑛𝑖} = {9,5,1}; 15,3) = 3.226844. 

As 𝑔(ℰ; 𝑁, (𝑝𝑖)) is not a smooth function of ℰ (see Table 1), there could be no true probability 

density in ℰ domain. I shall derive pseudo probability density to be used in expressions involving 

integration by ℰ in thermodynamic limit. To be able to use analytical math, I have to extend (4-9) 

from discrete variables {𝑛𝑖} to continuous domain. I call 

• Thermodynamic limit is the approximation of large occupation numbers: 

𝑛𝑖 ≫ 1  ∀  𝒊 ∈ 𝑮 
(13) 

 
1 In case of a sample with event probabilities (2); the multiplicity of ℰ is the multiplicity of the value of multinomial 

coefficient in (1) [41] 

https://math.stackexchange.com/questions/1441170/number-of-ways-of-distributing-balls-into-boxes


In thermodynamic limit, I can use Stirling’s approximation for factorials 

ln 𝑛! ≈
1

2
ln 2𝜋𝑛 + 𝑛 ln 𝑛 − 𝑛 (14) 

It allows rewriting of (4, 6), for probabilities (2), as 

𝜇(𝑁, (𝑝𝑖)) ≅ −
1

2
[(𝑀 − 1) ∙ ln 2𝜋𝑁 + ln ∏ 𝑝𝑖

𝒊∈𝑮

] ⇒ 𝜇(𝑁, 𝑀) =
𝑀

2
ln 𝑀 −

𝑀 − 1

2
ln 2𝜋𝑁 (15) 

 ℰ((𝑛𝑖);  𝑁, (𝑝𝑖)) ≅ ∑ (𝑛𝑖 +
1

2
)

𝒊∈𝑮

∙ ln
𝑛𝑖

𝑁𝑝𝑖
= ∑ (𝑛𝑖 +

1

2
)

𝒊∈𝑮

∙ ln 𝑛𝑖 − (𝑁 +
𝑀

2
) ln

𝑁

𝑀
 (16) 

Expr. (16) reverberates with the proposed [16] electron correlation energy 𝐸𝑐𝑜𝑟 = 𝜘 ∑ 𝑛𝑖 ln 𝑛𝑖. 

Figures 4,5 demonstrate functions 𝜇(𝑁, (𝑝𝑖)) and ℰ calculated for two sets of parameters (𝑝𝑖) 

using exact expressions (4), (6), and approximations (15), (16). 

In thermodynamic limit, ℰ is a smooth function of {𝑛𝑖} approximated by positive semi-definite 

quadratic form of {𝑛𝑖 − 𝑁𝑝𝑖} in the vicinity of its minimum (7): 

 
ℇ ≅ ∑ 𝑏𝑖𝑗 ∙ (𝑛𝑖 − 𝑁𝑝𝑖) ∙ (𝑛𝑗 − 𝑁𝑝𝑗)

𝒊∈𝑮
𝒋∈𝑮

 
(17) 

Knowing the covariance matrix [17] of multinomial distribution (1) allows reduction of (17) to 

diagonal form. The covariance matrix, divided by 𝑁 is: 

 
𝜎𝑖𝑗 = 𝛿𝑖𝑗 ∙ 𝑝𝑗 − 𝑝𝑖 ∙ 𝑝𝑗 , where 𝛿𝑖=𝑗 = 1 ; 𝛿𝑖≠𝑗 = 0 (18) 

The rank of 𝜎𝑖𝑗 is 𝑀 − 1. If 𝑑𝑖𝑗 is a diagonal form of 𝜎𝑖𝑗, the eigenvalues of  𝜎𝑖𝑗 are 𝑑𝑖 = 𝑑𝑖𝑖: 

𝑑𝑖𝑗 = 𝑑𝑖𝑎𝑔(𝜎𝑖𝑗) ; 𝑑𝑖 = 𝑑𝑖𝑖 ; 𝑑1 ≡ 0 ; 𝑑𝑖>1 > 0 (19) 

For equal probabilities (2),  𝑑𝑖>1 = 1 𝑀⁄ .  I transform to new discrete variables: 

 

𝑥𝑖>1 = ∑(𝑛𝑗 − 𝑁𝑝𝑗)
Θ𝑗𝑖

√𝑑𝑖𝒋∈𝑮

= √𝑀 ∑ (𝑛𝑗 −
𝑁

𝑀
) ∙ Θ𝑗𝑖

𝒋∈𝑮

 ; 𝑥1 ≡ 0 (20) 

, where Θ𝑖𝑗 is matrix with columns as unit eigenvectors of 𝜎𝑖𝑗 corresponding to eigenvalues (19). 

In case of 𝑀 = 3 and probabilities (2) 

Θ𝑖𝑗 = [

1 √3⁄ −1 √6⁄ 1 √2⁄

1 √3⁄ −1 √6⁄ −1 √2⁄

1 √3⁄ √2 3⁄ 0

] (21) 

The eigenvector Θ𝑖1 corresponding to eigenvalue 𝑑1 ≡ 0 is perpendicular to hyper-plane defined 

by ∑ 𝑛𝑖 𝑖∈𝑮 = 𝑁 in M-dimensional space of {𝑖 ∈ 𝑮} coordinates, while vector (𝑛𝑖 − 𝑁𝑝𝑖) is 

parallel to the hyper-plane. Therefore, 𝑥1 ≡ 0 in (20). I rewrite (17) in terms of new variables {𝑥𝑖} 

as: 

ℇ =
1

2𝑁
∑ 𝑥𝑖

2

𝒊∈𝑮

=
⟨𝒙|𝒙⟩

2𝑁
=

𝑀

2𝑁
∑ (𝑛𝑖 −

𝑁

𝑀
)

2

𝒊∈𝑮

 (22) 

I call {𝑥𝑖} the canonical variables of the sample, and 𝒙 = (𝑥𝑖) the canonical momentum. I call 

parameter ℰ the energy. 𝑁 plays a role of mass. From (5, 6), for probabilities (2), it follows: 



ℰ((𝑛𝑖);  𝑁, (𝑝𝑖)) = 𝐻Ω(𝑁, (𝑝𝑖)) − 𝐻Ω((𝑛𝑖);  𝑁) (23) 

, where 𝐻Ω((𝑛𝑖);  𝑁) = ln Γ(𝑁 + 1) − ∑ ln Γ(𝑛𝑖 + 1)

𝑖∈𝑮

 (24) 

Hence, for elementary eigenstates, energy equals difference between entropy 𝐻Ω(𝑁, (𝑝𝑖)) of 

equilibrium, and entropy 𝐻Ω({𝑛𝑖};  𝑁) of the sample, i.e. energy equals knowledge [about object 

state]. As entropies (5), (24) are in units of nats, so is the energy (6,16,22,23). 

Figure 5 demonstrates function √ℰ/𝑁 calculated for two sets of parameters (𝑝𝑖) using exact 

expression (6) and approximations (16), and (22). I plotted √ℰ/𝑁 instead of ℰ to show asymptotic 

behavior of (6) and (16) in comparison with quadratic form (22). Using (9, 15, 22) I obtain 

multivariate normal approximation [17] to multinomial distribution (1) as 

𝑃((𝑥𝑖);  𝑁, (𝑝𝑖)) ≅ (2𝜋𝑁)
1−𝑀

2 ∙ 𝑒𝑥𝑝 [− ∑ (
𝑥𝑖

2

2𝑁
+

ln 𝑝𝑖

2
)

𝒊∈𝑮

] = 𝑒𝑥𝑝 [𝜇(𝑁, (𝑝𝑖)) − ∑
𝑥𝑖

2

2𝑁
𝒊∈𝑮

] (25) 

Figure 6 shows graphs of ln 𝑃((𝑛𝑖); 𝑁, (𝑝𝑖)) as a function of 𝑛1 calculated for 𝑁 = 1000 and four 

sets of probabilities (𝑝𝑖), using exact formula (1), and multivariate normal approximation (25). 

In order to derive pseudo probability density in ℰ domain, I note that: 

• In thermodynamic limit, the number 𝐹(ℰ0; 𝑁, 𝑀) of distinct event samples having ℇ ≤ ℰ0 is 

proportional to the volume of (𝑀 − 1) –dimensional sphere of radius |𝒙0| = √2𝑁ℰ0. This 

statement can be expressed as 

𝐹(ℰ0; 𝑁, 𝑀) = lim
𝑁→∞

∑ 𝑔(ℇ; 𝑁, 𝑀)

{ℇ}≤ℰ0

= 𝑎(𝑁, 𝑀) ∙ (2𝑁ℰ0)
𝑀−1

2  (26) 

The sum in (26) is over all distinct values of ℇ which are less or equal than ℇ0. The function 

𝑎(𝑁, 𝑀) is determined from normalization requirement: 

1 = ∑ 𝑃(ℇ; 𝑁, 𝑀)

{ℇ}

= ∑ 𝑔(ℇ; 𝑁, 𝑀)

{ℇ}

∙ 𝑒𝑥𝑝(𝜇(𝑁, 𝑀) − ℇ) (27) 

In order to convert from sums to integrals over continuous variable ℇ, I define pseudo density 

𝑔(ℇ; 𝑁, 𝑀) of object states as 

𝑔(ℰ; 𝑁, 𝑀) =
𝜕

𝜕ℰ
𝐹(ℰ; 𝑁, 𝑀) = 𝑎(𝑁, 𝑀) ∙

𝑀 − 1

2
∙ (2𝑁)

𝑀−1
2 ∙ ℰ

𝑀−3
2  (28) 

The corresponding pseudo probability density 𝑃(ℰ; 𝑁, 𝑀) is given by (10). The normalization 

requirement for these functions becomes: 

1 = ∫ 𝑃(ℰ; 𝑁, 𝑀)𝑑ℇ
ℇ𝑚𝑎𝑥

0

= ∫ 𝑔(ℇ; 𝑁, 𝑀) ∙ 𝑒𝑥𝑝(𝜇(𝑁, 𝑀) − ℇ)𝑑ℇ
ℇ𝑚𝑎𝑥

0

 (29) 

The ℇ𝑚𝑎𝑥 value is obtained from (6) by having event 𝒋 with lowest probability 𝑝𝑚𝑖𝑛 = min
𝒊∈𝑮

{𝑝𝑖} 

acquire maximum population: 𝑛𝒋 = 𝑁;  𝑛𝑖≠𝑗 = 0. From (6), as 𝑁 → ∞: 

ℇ𝑚𝑎𝑥(𝑁, (𝑝𝑖)) ≅ −𝑁 ∙ ln 𝑝𝑚𝑖𝑛 (30) 

For probabilities (2): 
ℇ𝑚𝑎𝑥(𝑁, 𝑀) ≅ 𝑁 ∙ ln 𝑀 −

𝑀 − 1

2
ln 2𝜋𝑁 +

𝑀

2
ln 𝑀 (31) 

https://en.wikipedia.org/wiki/Nat_(unit)


From (31) ℇ𝑚𝑎𝑥 → ∞ as 𝑁 → ∞. That allows replacing ℇ𝑚𝑎𝑥 in the upper limit of integral in (29) 

with ∞. The expression for function 𝑎(𝑁, 𝑀) in (26) is [17]: 

 

𝑎(𝑁, 𝑀) = [𝑒𝜇(𝑁,𝑀) ∙ (2𝑁)
𝑀−1

2 ∙ ∫ ℇ
𝑀−1

2 𝑒−ℇ𝑑ℇ
∞

0

]

−1

=
𝑒−𝜇(𝑁,𝑀)

(2𝑁)
𝑀−1

2 Γ (
𝑀 + 1

2 )
 (32) 

Using (32, 15) I write (26) as 

𝐹(ℰ; 𝑁, 𝑀) =
ℇ

𝑀−1
2

Γ (
𝑀 + 1

2 )
𝑒−𝜇(𝑁,𝑀) =

(2𝜋𝑁ℰ)
𝑀−1

2

𝑀
𝑀
2 ∙ Γ (

𝑀 + 1
2 )

=
𝑉(√2𝑁ℰ; 𝑀 − 1)

𝑀
𝑀
2

 (33) 

, where 𝑉(√2𝑁ℰ; 𝑀 − 1) =
(2𝜋𝑁ℰ)

𝑀−1
2

Γ (
𝑀 + 1

2 )
 

is the volume of (𝑀 − 1) –dimensional 

sphere of radius |𝒙| = √2𝑁ℰ. 

The number 𝑛(ℰ) of distinct values of ℰ in 𝑁 → ∞ limit can be estimated from (33, 12) as 

𝑛(ℰ) =
𝐹(ℰ; 𝑁, 𝑀)

𝑀!
=

(2𝜋𝑁ℰ)
𝑀−1

2

𝑀
𝑀
2 ∙ Γ (

𝑀 + 1
2 ) Γ(𝑀 + 1)

 (34) 

From (34), I can approximately enumerate distinct energy levels ℰ𝑛 by “quantum number” 𝑛: 

ℰ𝑛 = [Γ (
𝑀 + 1

2
) Γ(𝑀 + 1)𝑒𝜇(𝑁,𝑀) ∙ 𝑛]

2
𝑀−1

=
𝑀

2𝜋𝑁
[Γ (

𝑀 + 1

2
) Γ(𝑀 + 1)𝑀

1
2 ∙ 𝑛]

2
𝑀−1

 (35) 

From (28, 33) the pseudo density 𝑔(ℇ; 𝑁, 𝑀) of object states is: 

𝑔(ℰ; 𝑁, 𝑀) =
𝜕

𝜕ℰ
𝐹(ℰ; 𝑁, 𝑀) =

ℇ
𝑀−3

2 𝑒−𝜇(𝑁,𝑀)

Γ (
𝑀 − 1

2 )
 (36) 

I use condition (11) to define effective ℰ𝑚𝑎𝑥
𝑒𝑓𝑓

 value: 

𝐹(𝑁, 𝑀) = 𝐹(ℰ𝑚𝑎𝑥
𝑒𝑓𝑓

; 𝑁, 𝑀) =
ℰ𝑚𝑎𝑥

𝑒𝑓𝑓
𝑀−1

2

Γ (
𝑀 + 1

2 )
𝑒−𝜇(𝑁,𝑀) =

(𝑁 + 𝑀 − 1)!

𝑁! (𝑀 − 1)!
 (37) 

Figure 7 shows 𝐹(ℰ; 𝑁, {𝑝𝑖}) calculated from expressions (1, 6), and from formula (33). From (10, 

15, 36), the pseudo probability density function (pdf) of event samples in thermodynamic limit is 

 

𝑃(ℰ; 𝑁, 𝑀) =
ℇ

𝑀−3
2 𝑒−ℇ

Γ (
𝑀 − 1

2 )
= 𝛾𝑏,𝑐(ℇ);         𝑏 = 1;   𝑐 =

𝑀 − 1

2
 (38) 

, where 𝛾𝑏,𝑐(ℇ) is the pdf of gamma [17] distribution with scale parameter 𝑏 = 1, and shape 

parameter 𝑐 = (𝑀 − 1) 2⁄ . I calculate moments of ℰ in equilibrium: 

Mean: 〈ℰ〉𝑒𝑞 = ∑ ℰ((𝑛𝑖);  𝑁, 𝑀) ∙ 𝑃((𝑛𝑖);  𝑁, 𝑀)
{𝑛𝑖}

 (39) 

https://en.wikipedia.org/wiki/Volume_of_an_n-ball
https://en.wikipedia.org/wiki/Volume_of_an_n-ball


Variance: 𝜎ℰ
2 = ∑(ℰ((𝑛𝑖); 𝑁, 𝑀) − 〈ℰ〉)

2
∙ 𝑃((𝑛𝑖); 𝑁, 𝑀)

{𝑛𝑖}

 (40) 

𝑟𝑡ℎ moment 

about mean: 
𝜅𝑟(𝑁, 𝑀) = ∑(ℰ((𝑛𝑖);  𝑁, 𝑀) − 〈ℰ〉)

𝑟
∙ 𝑃((𝑛𝑖);  𝑁, 𝑀)

{𝑛𝑖}

 (41) 

The sums in (39-41) are over all partitions of N. Expression (38) allows explicit calculation of all 

moments of ℰ in thermodynamic limit. From (38) the mean value 〈ℰ〉𝑒𝑞, the variance 𝜎ℰ
2, and the  

third moment 𝜅3, in equilibrium, are: 
〈ℰ〉𝑒𝑞 =

𝑀 − 1

2
 (42) 

 𝜎ℰ
2 =

𝑀 − 1

2
 (43) 

 𝜅3 = 𝑀 − 1 (44) 

Figure 8 shows calculations of 〈ℰ〉𝑒𝑞, 𝜎ℰ
2, and 𝜅3 from expressions (39-41) for the moments, with 

probability mass function (1). It demonstrates how these values asymptotically approach 

thermodynamic limit values (42-44) as 𝑁 ∙ 𝑝𝑖 → ∞. 

The knowledge about object’s state is not full if sample size 𝑁 is finite [13]. Even in case of 

maximum knowledge, when the sample of size 𝑁 consists of the same event, there is 𝑒−1 (𝑁 + 1)⁄  

probability a sample of size 𝑁 + 1 will return two distinct events. I define knowledge confidence  

Λ as: 

Λ =
ℰ((𝑛𝑖);  𝑁, (𝑝𝑖))

𝑁
[

𝑁

ℇ𝑚𝑎𝑥(𝑁, (𝑝𝑖))
]

𝑁→∞

=
ℰ((𝑛𝑖);  𝑁, (𝑝𝑖))

𝑁 ln 𝑀
 (45) 

To illustrate the notion of knowledge confidence, imagine an experiment to determine polarization 

of a light source with a polarizer coupled to light detector. If all 𝑁 photons from the source arrive 

at the detector, does it mean I know the polarization of light source with absolute certainty? The 

answer is no, since there is a chance, if I repeat the experiment with 𝑁 + 1 photons, at least one 

photon will be lost in polarizer. 

I shall demonstrate how the presented model correlates with some known constructs. Consider 

one-dimensional quantum harmonic oscillator. Its energy levels [18] are given by: 

ℰ𝑛 = (𝑛 +
1

2
) ∙ Δℇ (46) 

, where Δℇ is the interval between energy levels; n = 0,1,2 … . Energy levels (46) are equally-

spaced. The energy levels of event sample of cardinality 𝑀 = 3 exhibit similar pattern. As shown 

on Figure 1, linear dependence on quantum number n holds reasonably well if 𝑛 is not too large. 

From (12), the linearity breaks down when 𝑛 ≥ 𝑁2 24⁄ . From (22): 

 

 ℰ = ∑
∆𝑖

2

2 ∙ 〈𝑛〉
𝑖∈𝑮

 (47) 

, where 
∆𝑖= 𝑛𝑖 − 〈𝑛〉 ; ∑ ∆𝑖= 0

𝑖

 ; 〈𝑛〉 =
𝑁

𝑀
 (48) 

From above, the energy levels of an event sample of cardinality 𝑀 = 3 are: 

ℰ𝑘 =
𝐿𝑘

𝑁
 (49) 



, where 𝐿𝑘 are Loeschian numbers [19]. With (46, 49), I can write the comparison table of the first 

few energy levels of quantum harmonic oscillator in units of Δℇ/2, and of event sample of 

cardinality 𝑀 = 3 in units 1 𝑁⁄ : 

 quantum harmonic   

 oscillator 
 1 3  5 7 9 11  13 15  17 19 21 23 25 27  29 31 33 35  37 39 41 43 

 event sample of  

 cardinality 𝑀 = 3 
0 1 3 4  7 9  12 13  16  19 21  25 27 28  31   36 37 39  43 

, where black boxes designate missing energy levels. In the second row, the energy levels shown 

in shaded boxes are only realized for samples with sizes satisfying 𝑚𝑜𝑑(𝑁, 3) > 0; and energy 

levels shown in white boxes are realized for samples with sizes satisfying 𝑚𝑜𝑑(𝑁, 3) = 0. Here 

𝑚𝑜𝑑(𝑁, 3) is the remainder of division of 𝑁 by 3. 

Consider another quantum mechanical example: particle of mass 𝑚 in a box of size 𝐿. 

Its energy levels [18] are given by: 

ℰ𝑛 =
ℎ2

8𝑚𝐿2
𝑛2 ; 𝑛 = 1,2,3 … (50) 

In presented model, similar energy spectrum is exhibited by event sample of cardinality 𝑀 = 2, 

as shown on Figure 2. From (47), the energy levels of an event sample of cardinality 𝑀 = 2, in 

thermodynamic limit approximation, are: 
ℰ𝑛 =

𝑛2

2𝑁
=

ℎ2

8𝑚𝐿2
𝑛2 ; 𝑛 = 0,1,2 … (51) 

, where 𝑚 = 𝑁 ∙ (
ℎ

2𝐿
)

2

 is to be considered as the effective mass of the particle. (52) 

Energy levels (51) with even 𝑛 are only possible when 𝑁 is even, and energy levels with odd 𝑛 are 

only possible when 𝑁 is odd. With ½ probability the lowest energy level is ℰ = ℰ0 = 0, and with 

½ probability it is ℰ = ℰ1 = 1, in units of  ℎ2 (8𝑚𝐿2)⁄ . 

 

3. THERMODYNAMIC ENSEMBLE 

In previous section, the event sample represented a single object. In this section I consider a 

collection of objects; each object represented by an event sample of size 𝑁, and cardinality 𝑀. I 

call such collection thermodynamic ensemble. Objects with different 𝑁 or 𝑀 belong to different 

thermodynamic ensembles. I call event sample {𝑛𝑖} a mode. I designate {𝒌} the set of modes an 

object may occupy, and 𝐾𝒌 the number of objects in mode 𝒌: 

 
∑ 𝐾𝒌

{𝒌}

= 𝐾 (53) 

The probability for an object to be in mode 𝒌 is given by (1, 9). Objects in the same mode 𝒌 are 

indistinguishable, by definition of measurement. The probability mass function of distribution of  

modes among objects is: 
𝑃((𝐾𝒌);  𝐾, (𝑝𝒌)) = 𝐾! ∏

𝑝𝒌
𝐾𝒌

𝐾𝒌!
{𝒌}

 (54) 

The objective is to find equilibrium, i.e. the most probable distribution (𝐾𝑘). For a standalone 

object, the most probable distribution is the one which maximizes (54): 

 𝐾𝒌 = 𝐾 ∙ 𝑝𝒌 (55) 

Consider objects to be part of thermodynamic ensemble in a certain state. That imposes conditions 

on distribution of modes, so relations (42-44), (55) may no longer hold. I consider one of the 

possible conditions and show how it leads to the notion of temperature. Let the state of 



thermodynamic ensemble be such that the mean energy of objects in equilibrium is 〈ℰ〉𝑒𝑞, which 

may be different from equilibrium mean energy of a standalone object (42). Then: 

〈ℰ〉𝑒𝑞 ∙ 𝐾 = ∑ 𝐾𝒌 ∙ ℰ𝒌

{𝒌}

 (56) 

To find the most probable distribution of modes (𝐾𝒌), I shall maximize logarithm of (54) using 

method of Lagrange multipliers [20] with conditions (53, 56): 

ln 𝑃((𝐾𝒌);  𝐾, (𝑝𝒌)) = ln Γ(𝐾 + 1) + ∑[𝐾𝒌 ∙ ln 𝑝𝒌 − ln Γ(𝐾𝒌 + 1)]

{𝒌}

= ln Γ(𝐾 + 1) + ∑[𝐾𝒌 ∙ (𝜇 − ℰ𝒌) − ln Γ(𝐾𝒌 + 1)]

{𝒌}

 
(57) 

From (57, 56, 53) I obtain the following equation involving Lagrange multipliers 𝛼 and 𝛽: 

Ψ0(𝐾𝒌 + 1) = 𝜇 − (1 + 𝛼) ∙ ℰ𝒌 − 𝛽 (58) 

, where Ψ0 is digamma function, and 𝛼 and 𝛽 are to be determined by solving (58) for 𝐾𝒌: 

𝐾𝒌 = Ψ0
−1 (𝜇 −

ℰ𝒌

𝑇
− 𝛽) − 1 (59) 

, and by plugging 𝐾𝒌 from (59) into (56) and (53). In (59), Ψ0
−1 is the inverse digamma function, 

and 1 𝑇⁄ = 1 + 𝛼. The parameter 𝑇 is commonly known as temperature. 

Since the number of objects 𝐾𝒌 in mode 𝒌 cannot be negative, expression (59) effectively limits 

modes which can be present in equilibrium to those satisfying 

 
𝜇 −

ℰ𝒌

𝑇
− 𝛽 + 𝛾 ≥ 0 (60) 

, where 𝛾 ≅ 0.577215665 is Euler–Mascheroni constant. With approximation [21]:  

𝑒𝑥𝑝(Ψ0(𝐾𝒌 + 1)) ≅ 𝐾𝒌 + 1 2⁄ ;  I rewrite (59) as: 
𝐾𝒌 ≅ 𝑒𝑥𝑝 (𝜇 −

ℰ𝒌

𝑇
− 𝛽) −

1

2
 (61) 

Presence of −½ term in (61) leads to a computationally horrendous task of calculating 𝛽 and 𝑇, 

because the summation in (53, 56) has to be only performed for modes satisfying (60). I shall leave 

the exact computation to a separate exercise, and make a shortcut, by ignoring −½ term in (61). 

This approximation is equivalent to Boltzmann’s postulate2 that the number of objects in mode 𝒌, 

in equilibrium, is proportional to 𝑒𝑥𝑝(− ℰ𝒌 𝑇⁄ ). The shortcut allows calculation of Lagrange 

multiplier 𝛽 from (53): 

𝑒𝑥𝑝(−𝛽) =
𝐾

𝑍(𝑇)
 , where 𝑍(𝑇) = ∑ 𝑒𝑥𝑝 (𝜇 −

ℰ𝒌

𝑇
)

{𝒌}

 (62) 

Using (36), the partition function 𝑍(𝑇) in (62) can be evaluated as: 

𝑍(𝑇) = ∑ 𝑒𝑥𝑝 (𝜇 −
ℰ𝒌

𝑇
)

{𝒌}

= ∫
ℰ

𝑀−3
2

Γ (
𝑀 − 1

2 )

∞

0

𝑒𝑥𝑝 (−
ℰ

𝑇
) 𝑑ℰ = 𝑇

𝑀−1
2  (63) 

The equation (56) then becomes 〈ℰ〉𝑒𝑞 = 𝑇2 ∙
𝜕

𝑇
ln 𝑍 =

𝑀 − 1

2
∙ 𝑇 (64) 

 
2 While widely used, this postulate has rather unphysical consequence that there is a non-zero probability of finding 

an object in a mode with arbitrary large energy. Another consequence is the divergence of partition function for some 

constructs, e.g. hydrogen electronic levels [40]. 



Eq. (64) is the relation [22] between mean per-particle energy and temperature in (𝑀 − 1)-

dimensional Maxwell-Boltzmann gas. 

The thermodynamic equilibrium per-object entropy Η𝑇
𝑒𝑞

 is the number of nats required to 

encode distribution of modes in equilibrium. Using (15) and (64), I evaluate Η𝑇
𝑒𝑞

 in 𝐾 → ∞ limit:  

 
Η𝑇

𝑒𝑞 = − ∑ 𝑝𝒌 ∙ ln 𝑝𝒌

{𝒌}

=
𝑀 − 1

2
ln(𝑒𝑇) − 𝜇 ≅

𝑀 − 1

2
ln(2𝜋𝑒𝑁 ∙ 𝑇) −

𝑀

2
ln 𝑀 (65) 

, where 
𝑝𝒌 = 𝑒𝑥𝑝 (𝜇 −

ℰ𝒌

𝑇
) 𝑍(𝑇)⁄  (66) 

In case of 𝑀 = 4, i.e. for (𝑀 − 1) = 3 degrees of freedom, expression (65) turns into equivalent 

of Sackur-Tetrode equation [22] for the entropy of ideal gas. For thermodynamic equilibrium 

entropy of a standalone object, instead of (65), I have: 

Η𝑒𝑞 = 〈ℰ〉𝑒𝑞 − 𝜇 =
𝑀 − 1

2
ln(2𝜋𝑒𝑁) −

𝑀

2
ln 𝑀 (67) 

The difference of entropies (65, 67) by 
𝑀−1

2
ln 𝑇 term is due to spread in object energies. The non-

zero thermodynamic entropy means the mode is unknown prior to observation, for each 

observation. I rewrite (67) as: 

 

Η𝑒𝑞 = Η0
𝑒𝑞(𝑀) +

𝑀 − 1

2
ln 𝑁 ; where Η0

𝑒𝑞(𝑀) =
𝑀 − 1

2
ln 2𝜋𝑒 −

𝑀

2
ln 𝑀 (68) 

The expression for Η0
𝑒𝑞(𝑀) in (68) was derived in thermodynamic limit, i.e. when 𝑁 → ∞. When 

𝑁 = 1, Η𝑒𝑞 = ln 𝑀. By comparing Η0
𝑒𝑞(𝑀) to ln 𝑀 (Figure 9) I see that Η0

𝑒𝑞(𝑀) fairly close to 

ln 𝑀 except when 𝑀 is large enough, in which case thermodynamic limit approximation for the 

given 𝑁 becomes less valid anyhow. Therefore, I can replace Η0
𝑒𝑞(𝑀) with ln 𝑀 in (68) and write 

thermodynamic equilibrium entropy as: 

Η𝑒𝑞 = ln 𝑀 +
𝑀 − 1

2
ln 𝑁 ; Η𝑇

𝑒𝑞 = ln 𝑀 +
𝑀 − 1

2
ln(𝑁𝑇) (69) 

Figure 10 shows the comparison of thermodynamic equilibrium entropy Η𝑒𝑞 of a standalone 

object in 𝐾 → ∞ limit, calculated from Η𝑒𝑞 = − ∑ 𝑝𝒌 ∙ ln 𝑝𝒌{𝒌}  , and from (69). Since Η𝑇
𝑒𝑞

 should 

be ≥ ln 𝑀, it means 𝑇 cannot be less than 1 𝑁⁄ . 

The expression for 𝑍(𝑇) in (63) has been derived in thermodynamic limit approximation, i.e. 

when 𝑁 → ∞. It means there must be large number of energy levels included in sum (63), i.e. 

temperature 𝑇 cannot be too small. Therefore, the expressions (63-64) are only valid for 𝑇 ≫ ∆ℰ, 

where ∆ℰ is the characteristic difference between adjacent energy levels. 

For an event sample of cardinality 𝑀 = 3 the approximately evenly-spaced energy levels 

(Figure 1) allow for more accurate expression for partition function. From (35) the characteristic 

difference between adjacent energy levels is: 

〈Δℇ〉 =
𝑀!

𝑔(ℰ; 𝑁, 𝑀)
= 6 ∙ 𝑒𝑥𝑝(𝜇) =

18√3

2𝜋𝑁
≅

5

𝑁
 (70) 

Figure 11 shows the numeric calculation of the difference Δℇ between adjacent energy levels 

averaged over distinct event samples with the given value of 𝑁, and 𝑀 = 3. I can use (46), with 

degeneracy of each level 𝑔=6, as an approximation for combined energy levels (49) in expression 

for partition function (63), and obtain mean energy of modes with given 𝑁 as [23]: 



 
〈ℰ〉𝑒𝑞 =  

Δℇ

2
+

Δℇ

exp (
Δℇ
𝑇 ) − 1

 ; Δℇ = 2 𝑁⁄  (71) 

Eq. (71) reduces to (64) if 𝑇 ≫ Δℇ. (71) has been derived using linear dependence (46) of energy 

levels ℰ𝑛 on quantum number 𝑛, in 𝑁 ≫ 1, i.e. Δℇ ≪ 1 limit. For a black-body spectrum, the 

Δℇ ≪ 1 condition for validity of (71) has to be satisfied for Δℇ > 𝑇 as well. Therefore, a typical 

black-body spectrum can only be exhibited by ensembles with 1 𝑁⁄ < 𝑇 < 5 𝑁 ;  𝑁 ≫ 1⁄ . An 

example is cosmic microwave background. The higher the temperature, the less accurate (71) will 

be in Δℇ > 𝑇 region, where spectral intensity would fall off steeper than in (71). Such deviation 

from black-body is obvious in solar spectrum. 

The zero-point energy term Δℇ 2⁄  in (71) is the subject of a hundred-year controversy [24, 25]. 

The conventional theory views radiation as existing “out there”, decoupled from the matter. Such 

view leads to the infinite energy density due to the infinite number of hypothetically possible 

decoupled radiation modes, each multiplied by ℏ𝜔 2⁄  [23]. The conventional theory has no upper 

limit on ℏ𝜔, short of an artificial cut-off, usually assumed at Planck energy. Even with frequency 

cut-off, there is still a discrepancy with empirical evidence of at least 58 orders of magnitude [25], 

possibly the biggest contradiction of any theory. In presented model, Δℇ 2⁄  term cannot contribute 

more than (1 𝑁⁄ ) ≪ 1 to average energy, i.e. its contribution is well within standard deviation. 

Thermodynamic ensemble is the statistical ensemble of non-elementary eigenstates whose 

probabilities {𝑝𝒌} are given by (66), as opposed to elementary eigenstates’ probabilities given by 

(2). Using (66, 5, 24) in formula (6) for energy of arbitrary non-equilibrium state, and substituting 

𝒌 for 𝒊,  𝐾 for 𝑁, and 𝐾𝒌 for 𝑛𝒊: 

 𝛦𝑇 = 𝐻Ω
𝑒𝑞 − 𝐻Ω + ∑ 𝐾𝒌 ∙ [ℰ𝒌 − 〈ℰ〉𝑒𝑞] 𝑇⁄

{𝒌}

= 𝐻Ω
𝑒𝑞 − 𝐻Ω + 𝐾 ∙ [〈ℰ〉 − 〈ℰ〉𝑒𝑞] 𝑇⁄  (72) 

Here 𝐻Ω
𝑒𝑞

 is the entropy (5) of the ensemble, and 〈ℰ〉𝑒𝑞 is objects’ mean energy, in equilibrium. I 

rewrite (72) in terms of per-object quantities ℰ𝑇 = 𝛦𝑇 𝐾⁄ ; Η𝑇 = 𝐻Ω 𝐾⁄ , in the limit 𝐾 → ∞: 

 𝑇 ∙ ℰ𝑇 = 𝑇 ∙ (Η𝑇
𝑒𝑞 − Η𝑇) + 〈ℰ〉 − 〈ℰ〉𝑒𝑞 = −𝑇∆Η + ∆𝑈 = ∆𝑊 (73) 

Here ∆𝑈 = 〈ℰ〉 − 〈ℰ〉𝑒𝑞 ; ∆Η = Η𝑇 − Η𝑇
𝑒𝑞

  is the deviation of objects’ mean internal energy, and 

of mean thermodynamic entropy, from their equilibrium values; ∆𝑊 = 𝑇 ∙ ℰ𝑇 is the work done on 

ensemble. As expected, from (73), ℰ𝑇
𝑒𝑞 = 0. Eq. (73) represents the First Law of Thermodynamics. 

For ensemble of non-elementary eigenstates, 𝐻Ω
𝑒𝑞 ≤ 𝐻Ω

𝑚𝑎𝑥, where 𝐻Ω
𝑚𝑎𝑥 is the maximum entropy, 

achieved with equal population numbers {𝐾𝒌} in (54). It means, in thermodynamic ensemble, 

according to (72, 73), part of the knowledge is associated with objects’ internal energy. 

 

4. THE MEASUREMENT 

Measurement is one of the most debated topics in conventional theory [26, 27]. The 

controversy is stirred by the discreteness of outcomes of the measurement on quantum objects. A 

concept of wave function collapse has been devised early on, more as illustration, than explanation. 

The collapse concept is an awkward amalgamation of quantum postulate [28], and an implicit 

assumption of wave function’s physical reality (PR). The collapse concept is prevalent [29] despite 

its contradiction with other accepted frameworks, such as special relativity. A burlesque scenario 

can be imagined: using wave function of a photon, which has to be non-zero everywhere up to the 

moment of measurement, one can instantly communicate with an observer on the opposite side of 

the galaxy, by absorbing photons coming from a star near the center of galaxy, and thus impacting 

probability of the same photons being detected by the remote observer. A similar scenario inspired 

https://en.wikipedia.org/wiki/Black-body_radiation
https://en.wikipedia.org/wiki/Cosmic_microwave_background
https://en.wikipedia.org/wiki/Sunlight#/media/File:Solar_spectrum_en.svg
https://en.wikipedia.org/wiki/Zero-point_energy
https://en.wikipedia.org/wiki/Planck_energy
https://en.wikipedia.org/wiki/Fundamental_thermodynamic_relation
https://en.wikipedia.org/wiki/Wave_function_collapse


EPR paradox [30]. To work around the problem, a number of alternative QM interpretations, such 

as many-world [31], and pilot wave [32], have been proposed, still maintaining the PR viewpoint. 

The measurement problem disappears if we stop attributing PR to wave function, and stop 

mistaking correlation for causality. In this section I show the concept of wave function is 

superfluous, and that treating measurement as event sampling is consistent with predictions of 

conventional QM, without its controversial baggage. I discuss the basics of conventional QM: 

wave function, Born rule, and Schrödinger equation, emphasizing their true meaning which is 

rarely, if ever, mentioned in textbooks. I derive similar expressions using event sample as base 

construct, demonstrating the connection between QM and the presented model. I explain the 

mechanics of observation, and the role of observer. I show how model extends to include transition 

from quantum to classical state, dispersion and decoherence. 

The following experiment illustrates the delusion of wave function collapse concept, and of 

EPR “paradox”: put a pair of gloves (left-hand and right-hand) randomly into two boxes, and let 

Alice and Bob each pick a box. Until one of them opens a box, no one knows who has which glove. 

To the same effect, the pair of gloves can be substituted by a pair of entangled particles having 

opposite spin, in a gedankenexperiment. The conventional QM describes situation as superposition 

 
𝜓1 = [±𝐴𝑙𝑖𝑐𝑒𝑙𝑒𝑓𝑡⨂𝐵𝑜𝑏𝑟𝑖𝑔ℎ𝑡 ∓ 𝐴𝑙𝑖𝑐𝑒𝑟𝑖𝑔ℎ𝑡⨂𝐵𝑜𝑏𝑙𝑒𝑓𝑡] √2⁄  (74) 

, where ± signs enforce parity flip if Alice and Bob swap boxes, since mirror image of a left-hand 

glove is a right-hand glove. The lower sign corresponds to mirror image. If Alice finds left-hand 

glove in her box, Bob would find right-hand glove in his. In this case, conventional theory says, 

the wave function (74) collapsed into 𝒌1 = 𝐴𝑙𝑖𝑐𝑒𝑙𝑒𝑓𝑡⨂𝐵𝑜𝑏𝑟𝑖𝑔ℎ𝑡 eigenstate. Has Alice finding left-

hand glove caused collapse of 𝜓1, and, as a result, Bob to find right-hand glove in his box? Of 

course not. That is correlation, not causality, just like EPR case, where authors considered a pair 

of entangled particles. The distinct outcomes of the measurement (the event sample) are 

determined by the observation basis. A sampled event is one of object’s eigenstates in a given 

observation basis. In example above, the object consists of two particles: two glove boxes, 

entangled by glove pairing. Each particle produces event sample of cardinality 𝑀 = 2 (left or right 

glove). The events produced by different particles are correlated due to entanglement between the 

particles, even though events in each particle basis are completely random. The object’s eigenstates 

are composed as direct product of particle eigenstates. The state (74) is one of object’s eigenstates 

in preparation basis. The other 3 eigenstates could be constructed as: 

𝜓2 = [𝐴𝑙𝑖𝑐𝑒𝑙𝑒𝑓𝑡⨂𝐵𝑜𝑏𝑟𝑖𝑔ℎ𝑡 + 𝐴𝑙𝑖𝑐𝑒𝑟𝑖𝑔ℎ𝑡⨂𝐵𝑜𝑏𝑙𝑒𝑓𝑡] √2⁄  

𝜓3 = [±𝐴𝑙𝑖𝑐𝑒𝑙𝑒𝑓𝑡⨂𝐵𝑜𝑏𝑙𝑒𝑓𝑡 ∓ 𝐴𝑙𝑖𝑐𝑒𝑟𝑖𝑔ℎ𝑡⨂𝐵𝑜𝑏𝑟𝑖𝑔ℎ𝑡] √2⁄  

𝜓4 = [𝐴𝑙𝑖𝑐𝑒𝑙𝑒𝑓𝑡⨂𝐵𝑜𝑏𝑙𝑒𝑓𝑡 + 𝐴𝑙𝑖𝑐𝑒𝑟𝑖𝑔ℎ𝑡⨂𝐵𝑜𝑏𝑟𝑖𝑔ℎ𝑡] √2⁄  

In the measurement basis, the object’s eigenstates are: 

𝒌1 = 𝐴𝑙𝑖𝑐𝑒𝑙𝑒𝑓𝑡⨂𝐵𝑜𝑏𝑟𝑖𝑔ℎ𝑡 

𝒌2 = 𝐴𝑙𝑖𝑐𝑒𝑟𝑖𝑔ℎ𝑡⨂𝐵𝑜𝑏𝑙𝑒𝑓𝑡 

𝒌3 = 𝐴𝑙𝑖𝑐𝑒𝑙𝑒𝑓𝑡⨂𝐵𝑜𝑏𝑙𝑒𝑓𝑡 

𝒌4 = 𝐴𝑙𝑖𝑐𝑒𝑟𝑖𝑔ℎ𝑡⨂𝐵𝑜𝑏𝑟𝑖𝑔ℎ𝑡 

There are two observation bases involved in determining the conditional probability of finding 

object in state 𝒌, given it was prepared in state 𝜓. The observation bases are usually related by a 

[macroscopic parameter]-driven unitary transformation, albeit there are examples from quantum 

field theory (QFT), when they are not [33]. There could be no unitary transformation between 

observation bases of different cardinality 𝑀. In example, the observation bases of preparation and 

of measurement are rotated with respect to each other by π 4⁄  within plane formed by vectors 

https://en.wikipedia.org/wiki/EPR_paradox
https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics
https://en.wikipedia.org/wiki/Measurement_problem
https://en.wikipedia.org/wiki/Born_rule
https://en.wikipedia.org/wiki/Schrödinger_equation
https://www.britannica.com/science/Gedankenexperiment


𝒌1, 𝒌2. The observation basis rotated when boxes became identifiable (i.e. separated) by a 

parameter (distance): one box got to Alice and another box to Bob. This is an example of a unitary 

transformation of observation basis with distance as transformation parameter. 

At the core of conventional QM lies Born rule. It stipulates the probability ℘𝒌 of a particular 

outcome 𝒌 of a measurement performed on state [vector] 𝜓 is 

 
℘𝒌 =

|⟨𝜓|𝒌⟩|2

⟨𝜓|𝜓⟩⟨𝒌|𝒌⟩
= cos2 𝜑𝜓,𝒌 (75) 

, where 𝜑𝜓,𝒌 is the angle between 𝜓 and 𝒌. If vectors {𝒌} ∈ 𝑮 constitute an eigenbasis, then 

∑ ℘𝒌

𝒌

= 1 (76) 

The rest of QM deals with how probabilities (75) change with parameter-driven unitary 

transformation of eigenbasis {𝒌}. The Born rule is a conditional probability, i.e. a probability of 

outcome 𝒌, given the object was prepared in state 𝜓. In example above, the conditional probability 

of outcomes 𝒌1 … 𝒌4, given preparation (74) are: 

℘1 =
1

2
 ; ℘2 =

1

2
 ;  ℘3 = 0 ; ℘4 = 0 

Conventional QM does not deal with unconditional probabilities. QM predicts results of a 

measurement, if the state of an object is already known in some observation basis. The conditional 

measurement requires two or more particles to be entangled via some medium [23]. The 

entanglement enforces correlation between object’s eigenstates in preparation and measurement 

bases. That is the underlying setting, albeit not widely acknowledged, for Born rule. 

For any state 𝜓 there exists an observation basis in which 𝜓 has only one non-zero eigenstate 

component: 
|𝜓⟩ = 𝑼†|0 … , 𝑛𝒌 = 𝑁, 0 … ⟩ (77) 

, where 𝑼 is a unitary transformation to eigenbasis in which |𝜓⟩ = |0 … , 𝑁, 0 … ⟩. It corresponds 

to a situation when all 𝑁 measurement events are a particular outcome 𝒌, as e.g. detection of 

polarized photons using polarizer aligned with photon polarization. 

Schrödinger equation, in its true meaning, describes a parameter-driven unitary transformation 

of observation basis. The usual parameter of transformation is time, but it can be other parameter, 

e.g. distance. The integral form of Schrödinger equation: 

 
𝜓(𝑡) = 𝑼†(𝑡; 𝑡0) ∙ 𝜓(𝑡0) =  𝑒𝑥𝑝 [−𝑖 ∫ 𝜕𝑡 ∙ 𝓗

𝑡

𝑡0

] ∙ 𝜓(𝑡0) (78) 

is the same equation as (77), where 𝑼 is a unitary transform generated by Hermitian operator 𝓗. 

From (77), the eigenbasis components of quantum state must have certain phase relations with 

each other, enforced by 𝑼. In case of a time-driven unitary transformation (78), generated by time-

independent 𝓗, the phase relations between 𝒌 and 𝒋 eigenvector components are: 

 𝜑𝒌 − 𝜑𝒋 = (𝐸𝒌 − 𝐸𝒋) ∙ 𝑡 (79) 

, where 𝐸𝒌 are eigenvalues of 𝓗. If phase relations do not exist, or only exist for some components, 

then we have a mixed state, or a partially mixed state. The mixed state is that of a classical object, 

the pure state is that of a quantum object, and partially mixed state is that of an object in transition 

from quantum to classical. 

An outcome of a single act of measurement is an event. The measurement involves collecting 

sample of events {𝑛𝑖∈𝑮}. The term measurement is thus synonymous to sampling. The 

measurement events on quantum object are formed as a direct product (entanglement) of [more 

elementary] constituent events, as in example with glove boxes. The entanglement imposes 

https://en.wikipedia.org/wiki/Born_rule
https://en.wikipedia.org/wiki/Schrödinger_equation
https://en.wikipedia.org/wiki/Quantum_state#Mixed_states
https://en.wikipedia.org/wiki/Quantum_state#Pure_states
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correlation (phase relations) between measurement events taken in different observation bases, i.e. 

corresponding to different macroscopic parameters. The constituent events come from the 

measuring device, from environment, and even from observer memory. A taken event sample, 

decoupled from the measuring device and from the environment, is stored in observer memory. 

The observation process is illustrated on Figure 12: 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The captured event sample {𝑛𝑖∈𝑮} can be encoded and stored as, e.g.: 

1. Electronic spin configuration in magnetized materials [34] 

2. Charge distribution in capacitor elements of charge-coupled devices (CCD) [35] 

3. Sequence of nucleotide bases in a DNA strand [36] 

4. Neural circuits [37] 

It can be proven3, the knowledge encoded in any form can be construed by a statistical ensemble 
{𝑛𝒊∈𝑮} of orthogonal (uncorrelated) eigenstates (events), with set 𝑮 being the encoding alphabet. 

For a pure state there exists an observation basis (77) in which the measurement would only 

return event 𝒌. In such basis, entropy (24) 𝐻Ω((𝑛𝒊≠𝒌 = 0, 𝑛𝒌 = 𝑁);  𝑁) = 0. The state is known, 

by knowledge amount (23), with confidence (45). In a different observation basis, the 

measurement sample may consist of events {𝑛𝒊 > 0}, with entropy 𝐻Ω((𝑛𝒊);  𝑁) > 0. The sample 

may not carry the same amount of knowledge, as sample done in 𝒌 basis, because sample with 

𝐻Ω((𝑛𝒊);  𝑁) > 0 does not uniquely identify the state. E.g., a circular polarized light (eigenstate 

𝒌) will produce the same event sample, when measured with linear polarizer, with any orientation 

of the latter within the plane perpendicular to light propagation, i.e. under any unitary 

transformation which has 𝒌 as one of its eigenvectors. For that class of transformations, which 

 
3 Perhaps a simplistic proof is to consider encoded knowledge as a sequence of yes/no answers in a form of a binary 

string, which can also be represented as an integer number 𝑁. Factorization ln 𝑁 = ∑ 𝑛𝑖 ∙ ln 𝑑𝑖𝑖  into {𝑑𝑖} primes yields 

statistical ensemble {𝑛𝑖} where 𝑛𝑖 is the exponent of prime 𝑑𝑖 in factorization. As prime factors {𝑑𝑖} in factorization 

are uncorrelated, the associated eigenstates {𝒊} are orthogonal. 

Figure 12 

𝒖(𝑡1), 𝒖(𝑡2) are event samples, taken in observation bases corresponding 

to parameters 𝑡1, 𝑡2; 𝒖(𝑡1), 𝒖(𝑡2) are decoupled from the measuring 

device and from environment, and stored in observer memory; 

𝒖(0) is the currently captured event sample. The measurement events in 

𝒖(0) are formed as direct product of constituent events from the measuring 

device, environment, and memory. The feedback from memory may play 

a role in emergence of consciousness 

 

𝒖(𝑡1) 𝒖(𝑡2) 𝒖(0) 

https://en.wikipedia.org/wiki/Consciousness


keep the event sample unchanged, a state vector formalism can be used to extract the knowledge 

about quantum state from correlations between events taken in different observation bases. The 

state vector 𝒖 has to incorporate the correlation mechanism. One way to incorporate correlation is 

via phase relations between vector components, similar to (79). 

The state vector 𝒖 has to satisfy conditions: 

1. ⟨𝒖|𝒖⟩ = 1; this is the usual normalization requirement 

2. Vector 𝒖 should be invariant, up to a phase factor, with respect to a change in size 𝑁 of 

event sample, at least in the limit 𝑁 → ∞. This is to ensure the conditional measurement 

probabilities converge to (75) 

3. Vector 𝒖 has to incorporate the relevant macroscopic parameter(s). The variation of 

parameters should equate to a unitary transformation of observation basis 

Vector 𝒖 is an abstract mathematical construct whose only purpose is to enable correct calculation 

of conditional probabilities. That’s how the wave function should have been treated in a first place. 

The above considerations lead to the following expression, associated with measurement sample 

{𝑛𝒋∈𝑮}, and macroscopic parameter 𝑡: 

 
|𝒖(𝑡)⟩ = 𝑒𝑥𝑝(−𝑖 ∙ 𝜇(𝑁, (𝑝𝑖)) ∙ 𝑡) ∙ ∑ √𝑃𝒋𝑒𝑥𝑝(𝑖 ∙ 𝑡 ∙ ln 𝑃𝒋)

𝒋∈𝑮

∙ |𝒋⟩ (80) 

, where 𝑃𝒋 = 𝑛𝒋/𝑁, and 𝜇(𝑁, (𝑝𝑖)) is (4). The probabilities 𝑃𝒋 of different events in the sample are 

not necessarily equal, because measurement events are not elementary. The energy values ℰ𝒋 are 

associated with unconditional probabilities 𝑃𝒋 by eq. (9):  

|𝒖(𝑡)⟩ = ∑ √𝑃𝒋𝑒𝑥𝑝 (−𝑖 ∙
𝑡 ∙ ℰ𝒋

ℏ
)

𝒋∈𝑮

∙ |𝒋⟩ ; ℏ = 1 
𝑛𝑎𝑡

𝑟𝑎𝑑
 (81) 

, where I added conversion constant ℏ because the imaginary argument of  𝑒𝑥𝑝( ) has to be in 

𝑟𝑎𝑑𝑖𝑎𝑛𝑠. The correlation coefficient between vectors 𝒖(𝑡1) and 𝒖(𝑡2) is: 

 
𝑟 = ⟨𝒖(𝑡2)|𝒖(𝑡1)⟩ = ∑ 𝑃𝒋𝑒𝑥𝑝 (𝑖 ∙

𝑡 ∙ ℰ𝒋

ℏ
)

𝒋∈𝑮

 (82) 

, where 𝑡 = 𝑡2 − 𝑡1 is the correlation distance. From (82), the coefficient of determination 𝑅2, i.e. 

the ratio of outcomes in sample 2, which are predictable from sample 1, is: 

 
𝑅2 = |𝑟|2 = ∑ 𝑃𝒊𝑃𝒋 cos(𝑡 ∙ ℰ𝒋𝒊)

𝒊,𝒋∈𝑮

= ⟨𝑷| cos (
𝑡 ∙ 𝑬

ℏ
) |𝑷⟩ (83) 

, where 𝑷 = |𝑃𝒋⟩ is the probabilities vector; 𝜠 = ℰ𝒋𝒊 = ℰ𝒋 − ℰ𝒊. Antisymmetric matrix 𝜠 has two 

non-zero purely imaginary eigenvalues, which only differ in sign: 

ℰ𝜠 = |𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝜠)|     ; ℰ𝐸
2 = 𝑡𝑟𝑎𝑐𝑒(𝜠 ∙ 𝜠†) 2⁄ = − 𝑡𝑟𝑎𝑐𝑒(𝜠2) 2⁄  (84) 

Empirically established relations: (
ℰ𝜠

𝑀
)

2

≒ 2ℎ
ℰ((𝑛𝑖);  𝑁, (𝑝𝑖))

𝑁
 ; ℎ = 1 (𝑛𝑎𝑡) (85) 

 
ℰ𝐸

2 = 𝑀 ∙ (𝑀 − 1) ∙ 𝜎𝑬
2 (86) 

, where ℰ((𝑛𝑖);  𝑁, (𝑝𝑖)) is energy (6); 𝜎𝑬
2 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑬) = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(ln 𝑷). The ≒ sign in (85) 

means linear correlation, rather than functional equality. Figure 13 shows correlation between left 

and right sides of (85) for a number of event samples. In the limit 𝑁 → ∞ two sides of (85) turn 

into exact equality. 

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Coefficient_of_determination


Eq. (83) is routinely obtained by solving Schrödinger equation for probability of finding an 

object after time 𝑡 to be in the same initial state [23]. Evidently, the Born rule (75) is equivalent to 

coefficient of determination 𝑅2 in statistics, in being a conditional probability measure. The state 

vector 𝒖(𝑡) is the counterpart of wave function. The Schrödinger equation is, as expected4: 

𝑖ℏ
𝜕|𝒖⟩

𝜕𝑡
= 𝓗|𝒖⟩ , with diagonal form of 𝓗 being ℋ𝑗𝑘 = δ𝑗𝑘ℰ𝑘 (87) 

Eq. (83) represents a self-interference of an object at correlation distance 𝑡. To generalize for 

𝐿 > 1 objects, and allow for dispersion, and decoherence, I rewrite (83) as 

 
𝑅2 = ⟨𝑷 ∙ 𝑫|𝑫 ∙ 𝑃⟩ (88) 

, where 𝑫 is the dispersion matrix, defined as:  

𝑫 =
1

𝐿√𝑀
∑ 𝑒𝑥𝑝 (𝑖 ∙

𝝂𝑙 ∙ 𝜠

ℏ
)

𝐿

𝑙=1

 , where 𝝂𝑙 = (𝜈𝑗𝑘)
𝑙
 (89) 

Expr. (88) reduces to (83) if 𝝂 = 𝑡 ∙ 𝛿𝒋𝑘 . Matrix 𝝂𝑙 determines the type of eigenstate dispersion in 

𝐿 correlated objects. Two distinct types of parameter-driven dispersion could be identified: 

1. Coherent dispersion: 

(𝜈𝒋𝑘)
𝑙

= 𝑡 ∙ 𝑀 ∙
[𝑚𝑛𝑟𝑛𝑑𝒋𝑘 (𝑑𝑠, 𝑝, 𝑀)]

𝑙

𝑑𝑠
 ; 1 ≤ (𝑗, 𝑘) ≤ 𝑀  ;   1 ≤ 𝑙 ≤ 𝐿 (90) 

, where 𝑑𝑠 (𝑛𝑎𝑡𝑠−1) is a dispersion parameter. The numeric analysis of (88-90) reveals 

𝑅2(𝑡) follows Gaussian profile (Figure 14): 

𝑅2(𝑡) =
1

𝐿 ∙ 𝑀
+ (1 −

1

𝐿 ∙ 𝑀
) ∙ 𝑒𝑥𝑝 (−

ℰ𝜠
2𝑡2

ℎ2𝑑𝑠
) ; ℎ = 1 (𝑛𝑎𝑡) (91) 

The dispersion parameter 𝑑𝑠 is the property of the device. In case of coherent dispersion, 

the transition rate 𝜕𝑅2(𝑡) 𝜕𝑡⁄ |𝑡=0 = 0. 

2. Incoherent dispersion (decoherence): 

(𝜈𝒋𝑘)
𝑙

= 𝑀 ∙ [𝑚𝑛𝑟𝑛𝑑𝒋𝑘 (𝑡, 𝑝, 𝑀)]
𝑙
 ; 1 ≤ (𝑗, 𝑘) ≤ 𝑀  ;   1 ≤ 𝑙 ≤ 𝐿 (92) 

The numeric analysis of (88-89, 92) reveals 𝑅2(𝑡) follows exponential decay (Figure 15): 

𝑅2(𝑡) =
1

𝐿 ∙ 𝑀
+ (1 −

1

𝐿 ∙ 𝑀
) ∙ 𝑒𝑥𝑝 (−

ℰ𝜠
2𝑡

ℎ
) ; ℎ = 1 (𝑛𝑎𝑡) (93) 

Function 𝑚𝑛𝑟𝑛𝑑(𝑥, 𝑝, 𝑀) in (90, 92) returns 𝑀 × 𝑀 matrix, where each row equals 

multinomial distribution of 𝑥 events into 𝑀 buckets, with probability vector 𝑝 given by (2). The 

multinomial distribution of 𝑥 events is generated for each object 𝑙, 1 ≤ 𝑙 ≤ 𝐿. 

The condition for exponential decay (93) is the breakdown of predictable phase relations 

between constituting particles, i.e. decoherence. The decoherence is imposed by randomly 

generated 𝝂-matrix (92). The end result of decoherence is the mixed state, where probability is 

spread equally among 𝐿 ∙ 𝑀 eigenstates of 𝐿 dispersed objects. 

 
4 Any continuous dynamics which may be implied by (87) is a detachment from fundamentally discrete nature. The 

continuous process contradicts quantum postulate, unless it is an …abstraction, from which no unambiguous 

information concerning previous or future behavior can be obtained [28]. I would only provide continuous equations 

like (87) as a link to conventional theory, not as an advancement of the model 
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For thermodynamic ensemble, the exponential decay has a different context: 

 
𝐾𝒌 𝐾⁄ ≒

1

Ω𝑚𝑎𝑥
+ (1 −

1

Ω𝑚𝑎𝑥
) ∙ 𝑒𝑥𝑝(−𝜆 ∙ 𝑡) (94) 

, where 𝐾𝒌 is the number of objects remaining in initial state 𝒌; 𝐾 is the total number of objects, 

Ω𝑚𝑎𝑥 = 𝑒𝑥𝑝((𝐻Ω)𝑚𝑎𝑥) 

 
(𝐻Ω)𝑚𝑎𝑥 = ln Γ(𝑁 + 1) − 𝑀 ∙ ln Γ (

𝑁

𝑀
+ 1) (95) 

The exponential decay (94) is driven by transitions of constituting elementary eigenstates. Initially, 

all objects are in eigenstate 𝒌, represented by event sample {𝑛𝒊≠𝒌 = 0, 𝑛𝒌 = 𝑁}, having entropy 

(24) 𝐻Ω = 0. A transition changes event sample as: 

 {… , 𝑛𝒊, … , 𝑛𝒌, … } → {… , 𝑛𝒊 + 1, … , 𝑛𝒌 − 1, … } (96) 

The transition (96) is accompanied by a change in object entropy 𝐻Ω. The essential feature of a 

classical decay process is that per-object entropy Η is correlated with 𝐾𝒌 𝐾⁄  as: 

 𝐾𝒌 𝐾⁄ ≒ 𝑒𝑥𝑝(−Η) (97) 

The per-object entropy Η is calculated from object entropies (24) (𝐻Ω)𝑗 as: 

 

 Η = − ln [
1

𝐾
∑ 𝑒𝑥𝑝(−(𝐻Ω)𝑗)

𝐾

𝑗=1

] (98) 

The object state can be represented by (Ω = 𝑁! ∏ 𝑛𝑖!𝒊∈𝑮⁄ ) > 1 state vectors 𝒖, having different 

phase relationships between constituent events {𝒊}, due to different values of transformation 

parameter 𝑡. For a given value of transformation parameter, the probability to find object in 

corresponding state 𝒖 is 𝑒𝑥𝑝(−𝐻Ω) = 1 Ω⁄ . 

To prove the correlative relations (94, 97), a numeric analysis of Η vs. − ln(𝐾𝒌 𝐾⁄ ) vs. 𝜆 ∙ 𝑡 

has been performed, with wide variation of input parameters. The product 𝐾 ∙ 𝜆 ∙ 𝑡 is the number 

of transitions (96) randomly distributed across objects. Per object, 1 transition equates to 1 𝑛𝑎𝑡 of 

information loss. Figure 16 shows values of Η 𝜆⁄ , − ln(𝐾𝒌 𝐾⁄ ) 𝜆⁄ , plotted against 𝑡. While Η and 

𝜆 are object-dependent, Η 𝜆⁄  ratio is not, in the limit 𝐾 → ∞. The ratio Η 𝜆⁄  correlates with 

classical time, in this analysis represented by independent variable 𝑡. It explains why time 

measures derived from observation of vastly different macroscopic objects, are highly correlative. 

An illustration of how this correlation breaks down if 𝐾 is small is the increase in laser linewidth 

with decrease in number of photons in the mode [38], resulting in less accurate atomic clocks. In 

terms of time intervals, ∆𝑡 ≒ ∆Η 𝜆 = − ∆Ε (𝜆 ∙ 𝑇)⁄⁄ , where ∆Ε is per-object energy loss 

corresponding to per-object entropy change ∆Η, and 𝑇 is the temperature introduced in previous 

section. This relation indicates an accurate clock has to dispense the same amount of energy per 

cycle. The established correlative relation Η ≒ 𝜆 ∙ 𝑡 represents the Second Law of 

Thermodynamics. 

Above, energy and entropy are in units of nats. Parameter 𝑡 is dimensionless. The conversion 

to SI units is: ℰ𝜠𝑡 

ℏ
(𝑟𝑎𝑑𝑖𝑎𝑛𝑠) =

ℰ𝜠𝑡 (𝐽 ∙ 𝑠)

ℏ
 (99) 

, where 
ℏ = 1 

𝑛𝑎𝑡

𝑟𝑎𝑑
= 1.054571817 ∙ 10−34  (

𝐽 ∙ 𝑠

𝑟𝑎𝑑
) (100) 

, and 
ℎ = 1 (𝑛𝑎𝑡) = 6.62607015 ∙ 10−34 (𝐽 ∙ 𝑠) (101) 

https://en.wikipedia.org/wiki/Atomic_clock
https://en.wikipedia.org/wiki/Nat_(unit)
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Planck_constant
https://en.wikipedia.org/wiki/Planck_constant
https://en.wikipedia.org/wiki/Planck_constant


The conversion (101) is between 𝑛𝑎𝑡𝑠 and (𝐽 ∙ 𝑠). Therefore, energy and time, expressed in SI 

units, are not independent. If characteristic times of all processes in nature are increased by a factor, 

then all energies have to decrease by the same factor. There is no separate conversion between 

energy ℰ in nats, and energy ℰ in joules, or time 𝑡 in seconds and dimensionless parameter 𝑡. 

The conversion constant ℎ represents an average, per object, quantity of information loss in 

1 transition. Therefore, a change in amount of knowledge, being a result of a number of transitions, 

has to satisfy ∆Η ≥ ℎ. With (93, 85), it leads to the speed limit [39]: 

 
ℰ((𝑛𝑖);  𝑁, (𝑝𝑖)) ∙ 𝑡 ≥ ℎ ∙ 𝑁 (2𝑀2)⁄  (102) 

The 𝑅2 values are dimensionless. They should not depend on units used for arguments in (83, 

93). The ℏ conversion constant (100) takes care of that in (83). However, in (93), the resultant 

expression under 𝑒𝑥𝑝() is in 𝑛𝑎𝑡𝑠, as it should be. If energy is expressed in joules (𝐽), and time in 

seconds (𝑠), where would 𝑛𝑎𝑡𝑠 under 𝑒𝑥𝑝() in (93) appear from? There has to be additional 

conversion parameter added under 𝑒𝑥𝑝() in (93). This conversion parameter, unlike true 

conversion constants (100, 101), is a device parameter. With conversion parameter 𝜏 added, the 

expression under 𝑒𝑥𝑝() in (93), in SI units, becomes: 

ℰ𝜠
2𝑡

ℎ
⇒

ℰ𝜠
2𝜏

ℎ2
𝑡 = 𝜆𝑡 ; 𝜆 =

ℰ𝜠
2𝜏

ℎ2
  (103) 

, where 𝜏 (𝑛𝑎𝑡𝑠 ∙ 𝑠) is a dimensional device parameter with a meaning of decoherence time [23]. 

For a classical radiation detector, the expression for 𝜏 in (103) is [23]: 

 
𝜏 =

𝜅2∆𝜔

4𝜋3𝑐2𝜌𝐷𝜔
   (104) 

, where 𝑐 is the speed of light; 𝜅 is the refractive index of material; ∆𝜔 [rad/s] is the spread in 

object’s internal transition frequencies; 𝜌 is the number of correlated objects per unit surface area 

of the detector; 𝐷𝜔 the dimensionless scattering rate. The value ∆𝜔 in (104) conceivably is double 

the standard deviation of 𝜠-matrix (86), divided by ℏ, i.e.: 

 
∆𝜔 = 2 ∙ 𝜎𝑬 ℏ⁄  (105) 

Then, 
𝜏 =

𝜅2𝜎𝑬

𝜋2ℎ𝑐2𝜌𝐷𝜔
 ;  𝜆 =

ℰ𝜠
2 ∙ 𝜎𝑬

ℎ3

𝜅2

𝜋2𝑐2𝜌𝐷𝜔
(

𝑛𝑎𝑡𝑠

𝑠
) (106) 

The expression (106) is a restatement of Fermi’s golden rule for transition probability into 

continuous spectrum near 𝐸𝑓: 
𝜆 =

2𝜋

ℏ
|𝐸𝑖𝑓|

2
𝜚(𝐸𝑓) = ℎ𝜔2𝜚(𝐸𝑓) (107) 

, where 𝜚(𝐸𝑓) is density of final states, per unit ∆𝐸. By comparing (107) with expression (9) in 

[23], I get quite simple relation between decoherence time and density of final radiation states: 

 𝜏 = ℎ𝜚(𝐸𝑓) (108) 

 With (106, 108), for classical radiation detector 

 
𝜚(𝐸𝑓) =

𝜅2𝜎𝑬

𝜋2ℎ2𝑐2𝜌𝐷𝜔
 (109) 

The left side of (109) purports to be a property of radiation field, while the right side is the 

property of detector. The fact that seemingly unrelated parameters are connected to each other with 

only universal constants, is an argument against considering radiation as a standalone entity with 

properties independent of the measurement context [23]. 

The model united the seemingly disjoint QM artifacts: Fermi’s golden rule and Planck’s 

radiation formula [23], by exposing decoherence (93) as a driving factor in both cases. 

https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Fermi%27s_golden_rule
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 𝑁 = 1000;  𝑀 = 2; 

{𝑝𝑖} = {
1

2
,
1

2
} 

𝑁 = 900;   𝑀 = 3; 

{𝑝𝑖} = {
1

3
,
1

3
,
1

3
} 

𝑁 = 600;   𝑀 = 5; 

{𝑝𝑖} = {
1

5
,
1

5
,
1

5
,
1

5
,
1

5
} 

𝑁 = 189;   𝑀 = 7; 

{𝑝𝑖} = {
1

7
,
1

7
,
1

7
,
1

7
,
1

7
,
1

7
,
1

7
} 

ℇ 𝑔(ℰ; 𝑁, {𝑝𝑖}) ℇ 𝑔(ℰ; 𝑁, {𝑝𝑖}) ℇ 𝑔(ℰ; 𝑁, {𝑝𝑖}) ℇ 𝑔(ℰ; 𝑁, {𝑝𝑖}) 

0.000000 1 0.000000 1 0.000000 1 0.000000 1 

0.001998 2 0.003328 6 0.008299 20 0.036368 42 

0.007992 2 0.009972 3 0.016598 30 0.072735 210 

0.017982 2 0.009994 3 0.024828 30 0.107827 105 

0.031968 2 0.013311 6 0.024966 30 0.109103 140 

0.049951 2 0.023262 6 0.033127 20 0.110476 105 

0.071930 2 0.023328 6 0.033196 20 0.144194 420 

0.097905 2 0.029951 6 0.033265 20 0.145567 42 

0.127878 2 0.039846 3 0.041495 120 0.146843 420 

0.161847 2 0.040023 3 0.049521 20 0.180562 105 

0.199813 2 0.043196 6 0.050072 20 0.181935 840 

0.241778 2 0.043329 6 0.057889 60 0.183211 105 

0.287740 2 0.053246 6 0.058024 30 0.213187 140 

0.337700 2 0.063064 6 0.058162 30 0.215653 105 

0.391659 2 0.063396 6 0.058302 60 0.218302 1260 

0.449618 2 0.069775 6 0.066188 60 0.220951 105 

0.511576 2 0.069997 6 0.066393 30 0.223804 140 

0.577534 2 0.083198 6 0.066601 60 0.249555 210 

0.647492 2 0.089556 3 0.074556 60 0.250928 210 

0.721452 2 0.090154 3 0.074696 20 0.253394 630 

[…] […] […] […] […] […] […] […] 

640.1354 2 952.5446 6 929.0220 30 333.7789 105 

644.8379 2 955.9414 3 929.4275 60 334.1844 210 

649.6592 2 956.3468 6 930.8138 20 335.5707 42 

654.6150 2 957.7331 6 934.0276 20 337.6184 140 

659.7260 2 962.0473 6 934.7208 60 338.3115 210 

665.0203 2 963.1459 6 935.8194 20 339.4101 42 

670.5388 2 968.1543 3 940.4212 30 342.8495 105 

676.3459 2 968.8474 6 941.1144 20 343.5426 42 

682.5595 2 974.9556 6 946.8165 20 348.0859 42 

689.4673 2 981.7580 3 953.2134 5 353.3277 7 

 

  Table 1 

ℰ, 𝑔(ℰ; 𝑁, {𝑝𝑖}) value pairs calculated from (6) for four sets of parameters 𝑁, {𝑝𝑖} using [14] 

algorithm for finding partitions {𝑛𝑖} of integer 𝑁 into ≤ 𝑀 parts. For each partition {𝑛𝑖} I 

calculated the value of ℰ and multiplicity 𝐷(ℰ; 𝑁, 𝑀) of multinomial coefficient in (1) [41]. 

Finally, 𝑔(ℰ; 𝑁, {𝑝𝑖}) = 𝑠𝑢𝑚(𝐷) for each distinct value of ℰ produced the results for the table. 

I display the first 20 and the last 10 records from the table. 
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Distinct values of ℰ in increasing order calculated from (6) with (2), using [14] algorithm 

for finding partitions {𝑛𝑖} of integer 𝑁 into ≤ 𝑀 parts. The values of M and N are given 

on the graphs. The graphs represent complete set of distinct values of ℰ for the given 

values of M and N. The graphs demonstrate close to linear dependence of ℰ on “quantum 

number” in the vicinity of equilibrium ℰ = 0. This is a characteristic feature of a sample 

with cardinality 𝑀 = 3. Away from equilibrium the linear behavior is violated as 

interval Δℇ between energy levels begins to grow to reach (Δℇ)𝑚𝑎𝑥 = ln 𝑁 
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Distinct values of ℰ in increasing order calculated from (6) with (2), using [14] 

algorithm for finding partitions {𝑛𝑖} of integer 𝑁 into ≤ 𝑀 parts. The values of M and 

N are given on the graphs. The graphs represent complete set of distinct values of ℰ 

for the given values of M and N. 
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The total number 𝐹(𝑁, 𝑀) of distinct event samples (curves 1, 3), and the total number 

∑ 1{ℰ}  of distinct {ℰ} values (curves 2, 4) as functions of 𝑁 for two sets of 

probabilities (5): 

1. 𝐹(𝑁, 𝑀) for 𝑀 = 5 

2. ∑ 1{ℰ}  for 𝑀 = 5 

3. 𝐹(𝑁, 𝑀) for 𝑀 = 3 

4. ∑ 1{ℰ}  for 𝑀 = 3 

The values on curve 1 are by factor 𝑀! = 5! greater than on curve 2 as 𝑁 → ∞. The 

values on curve 3 are by factor 𝑀! = 3! greater than on curve 4 as 𝑁 → ∞. 

Using Stirling’s approximation for large 𝑁 in (11) one can show the curves grow 

proportionally to 𝑁𝑀−1 as 𝑁 → ∞ 

𝑁 
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(2) 

(3) 
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Function 𝜇(𝑁; {𝑝𝑖}) calculated for two sets of probabilities {𝑝𝑖}. 

Blue lines were calculated using formula (4). Red lines were 

calculated using thermodynamic limit approximation (15) 

 



  

Figure 5 

 

Values of √ℰ/𝑁 calculated as a function of 𝑛1/𝑁 with probabilities (2) for 

four sets of parameters: 

1. 𝑀 = 5;  𝑁 = 1000 

2. 𝑀 = 5;  𝑁 = 10 

3. 𝑀 = 2;  𝑁 = 1000 

4. 𝑀 = 2;  𝑁 = 4 

Blue lines were calculated using formula (6). Green dash lines were 

calculated using thermodynamic limit approximation (16). Red lines were 

calculated using quadratic form (22) approximation. For a given value of 𝑛1 

the values {𝑛𝑖>1} were distributed proportionally to corresponding 

probabilities {𝑝𝑖>1}. For large value of 𝑁 = 1000 the blue lines and green 

dash lines overlap closely as seen on curves 1 and 3. For small values of 𝑁 

the thermodynamic limit approximation is not accurate, and blue lines differ 

from green dash lines as seen on curves 2 and 4. Red lines overlap with blue 

lines in close proximity to the minimum (7) of ℰ. 
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Values of ln 𝑃({𝑛𝑖}; 𝑁, {𝑝𝑖}) calculated as a function of 𝑛1 for 

𝑁 = 1000 and four sets of probabilities {𝑝𝑖} 
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Blue lines were calculated using formula (1). Red lines were 

calculated using multivariate normal approximation (25). For the 

given value of 𝑛1 the distribution of values {𝑛𝑖>1} is proportional 

to the corresponding probabilities {𝑝𝑖>1} 
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The number 𝐹(ℇ0; 𝑁, 𝑀) of object states having ℇ ≤ ℇ0 as a function of ℇ0 

for three sets of the parameters and probabilities (2): 

1. 𝑀 = 7;  𝑁 = 189 

2. 𝑀 = 5;  𝑁 = 600 

3. 𝑀 = 3;  𝑁 = 900 

4. 𝑀 = 2;  𝑁 = 1000 

Solid lines are the results of calculation using formulas (1, 6). Dash lines 

represent thermodynamic limit approximation (33). The graphs show 

thermodynamic limit provides the better approximation the larger is the ratio 

𝑁 𝑀⁄ . Solid lines level off close to ℇ𝑚𝑎𝑥 because density of states per interval 

𝑑ℇ decreases near ℇ𝑚𝑎𝑥 due to non-spherical ℇ-domain boundary. The 

boundary is defined by ∑ 𝑛𝑖 𝑖∈𝑮 = 𝑁  ;  𝑛𝒊 ≥ 0 ∀  𝒊 ∈ 𝑮 

 

 

 

 

 

First three moments of ℰ plotted as dots vs. total number N of microstates for 

three sets of probabilities {𝑝𝑖}. The value of the third moment 𝜅3 is reduced by 

a factor of 2 to show its asymptotic behavior comparing with the first two moments.  
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Figure 8 

 

The mean value 〈ℰ〉, the variance 𝜎ℰ
2, and the third moment 𝜅3 vs. sample size N for 

three values of 𝑀 and probabilities (2). The graphs have been calculated using 

expressions (39-41) with probability mass function (1). The value of the third moment 

𝜅3 is reduced by a factor of 2 to show its asymptotic behavior comparing with 〈ℰ〉 and 

 𝜎ℰ
2. For each set of parameters, the curves approach (𝑀 − 1)/2 values as 𝑁 ∙ 𝑝𝑖 → ∞ 
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𝑀 = 7 
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Figure 9 

 

Comparison of Η0
𝑒𝑞(𝑀) in (68) with ln 𝑀 
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Figure 10 

 

In blue is the thermodynamic equilibrium entropy Η𝑒𝑞 of a standalone object 

calculated from Η𝑒𝑞 = − ∑ 𝑝𝒌 ∙ ln 𝑝𝒌{𝒌} , where 𝑝𝒌 is given by (66). In red is the 

thermodynamic equilibrium entropy calculated from (69). 

Two sets of graphs are for two values of 𝑀. 

𝑀 = 3 

𝑀 = 5 
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Figure 11 

 

Difference Δℇ between adjacent energy levels (6), averaged over distinct event 

samples with given value of 𝑁, and 𝑀 = 3. The curve is approximated by (70) as 

𝑁 → ∞ 



  

  

Figure 13 

 

The −ln( ) of left and right sides of (85), showing high degree of 

linear correlation. The graph was produced with MATLAB code: 

http://phystech.com/download/e2correlation.m 

with parameters: 𝑀 = 5;  𝑁 = 10000 

 

 

−2 ∙ ln (
ℰ𝜠

𝑀
) 

−ln [2
ℰ((𝑛𝑖);  𝑁, (𝑝𝑖))

𝑁
] 

http://phystech.com/download/e2correlation.m
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Figure 14 

 

Blue line is calculation of 𝑅2(𝑡) from (88-90) with parameters: 

𝑀 = 5 ;  𝐿 = 100 ; 𝑁 = 1000 ;  𝑑𝑠 = 1000, and event sample {𝑛𝒊} 

generated with multinomial pmf (1). 

 

Red line is Gaussian profile (91), where ℰ𝐸 = 0.4035 has been 

computed from event sample {𝑛𝒊} generated for blue line. 

 

The MATLAB code used in calculation: 

http://phystech.com/download/gaussian_dispersion.m 

 

http://phystech.com/download/gaussian_dispersion.m
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Figure 15 

 

Blue line is calculation of − ln 𝑅2(𝑡) from (88-89, 92) with parameters: 

𝑀 = 5 ;  𝐿 = 1000 ; 𝑁 = 1000, and event sample {𝑛𝒊} generated with 

multinomial pmf (1) 

 

Red line is exponential decay (93), where ℰ𝐸 = 0.3114 has been 

computed from event sample {𝑛𝒊} generated for blue line. 

 

The MATLAB code used in calculation: 

http://phystech.com/download/exponential_dispersion.m 

http://phystech.com/download/exponential_dispersion.m


 

 

Figure 16 

 

Blue crosses, visible inside red circles, are values of − ln(𝐾𝒌 𝐾⁄ ) 𝜆⁄ , 

where 𝐾 is the total number of objects; 𝜆 is the per-object information 

outflow rate; 𝐾𝒌 is the number of objects remaining in initial mode 𝒌 after 

𝐾 ∙ 𝜆 ∙ 𝑡 transitions (96). Red circles are the corresponding values of Η 𝜆⁄ , 

where Η is calculated as (98) with (24). Transitions (96) are randomly 

generated at a rate of 𝜆 transitions per object per 𝑡 interval. 

 

The MATLAB code used in calculation: 

http://phystech.com/download/time_entropy.m 

with parameters: 

𝑀 = 7 ;  𝐾 = 10000 ;  𝑁 = 1000 ;  𝜆 = 0.1 

 

𝑡 

http://phystech.com/download/time_entropy.m

