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Abstract 
I review a textbook derivation of Planck’s formula for spatial density of radiation 

energy. I point out at one inconsistency, and a couple of factitious assumptions used in 

derivation. I propose a derivation more aligned with quantum mechanical principles. I 

show the de-coherence of oscillator modes is the major factor in Planck’s law. 

 

By nearly universal consent, the day of Dec.14, 1900 when Planck’s formula [1, 2] for spatial 

density of radiation energy has been published, is considered [3] the birthday of quantum theory: 

𝑢𝜈𝑑𝜈 =
8𝜋ℎ𝜈3

𝑐3

𝑑𝜈

𝑒
ℎ𝜈
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Since then, the formula became a staple piece of every textbook on statistical physics [4, 5]. 

Its close match to experimental results is touted as one of the greatest achievements of quantum 

theory. For instance, the spectral intensity of cosmic microwave background (CMB) deviates from 

Planck’s formula less than 0.03% [6, 7]. The Planck’s derivation [1, 2] of (1) follows from: 

𝑢𝜈𝑑𝜈 =
8𝜋𝜈2

𝑐3
𝑈𝜈𝑑𝜈 (2) 

, where 𝑈𝜈 is the average energy of a resonator of frequency 𝜈 in a thermodynamic ensemble of 

resonators, with fixed total energy of the ensemble; 8𝜋𝜈2 𝑐3⁄  is, supposedly, the number of all 

hypothetically possible resonator modes per unit volume of space per unit frequency range. The 

formula for the average energy 𝑈𝜈 is derived from the energy levels of a quantum harmonic  

oscillator: 
ℰ𝑛 = (𝑛 +

1

2
) ∙ ℎ𝜈 (3) 

, and Boltzmann’s postulate that probability to find a member of thermodynamic ensemble in a 

state with energy ℰ𝑛 is proportional to 𝑒𝑥𝑝(−ℰ𝑛 𝑘𝑇⁄ ): 
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 (4) 

The reason the so-called zero-point energy term ℎ𝜈 2⁄  in (4) is not included into Planck’s formula 

(1) is the topic of a hundred-year controversy [8, 9]. A short argument follows here. A radiation 

mode manifests itself via electromagnetic interaction with the matter. As a result of this interaction, 

the energy quantum ℎ𝜈 is transferred from the matter to the radiation mode, or from radiation mode 

to the matter. If radiation mode is in its ground state with ℰ0 = ℎ𝜈 2⁄ , it cannot lose another ℎ𝜈 

quantum to the matter. That in itself does not prove the zero-point energy does not exist. However, 

the gravity which would have been exerted by zero-point energy of all hypothetically possible 

radiation modes is over 58 orders of magnitude bigger than the gravity which could be derived 

from empirical evidence [8]. I suggest this discrepancy is because, in textbooks, the radiation is 

[implicitly] considered a classical object, which exists “out there” in the open space, and possesses 

properties independent of the measurement context. Such view is contrary to the base principles 

of quantum mechanics [in Copenhagen interpretation]. I argue that the radiation modes which are 

present, are the ones which were actually emitted by the matter, not all the hypothetically possible 

https://en.wikipedia.org/wiki/Copenhagen_interpretation


radiation modes. Since the number of oscillators in the matter, which interact with radiation is 

limited, so is the number of radiation modes. A radiation mode and the corresponding matter 

oscillator should be viewed as one and the same [entangled] system. Planck may have had similar 

view, albeit not clearly stated. The word entanglement was not in physicist’s vocabulary at the 

time. Planck’s reasoning was [2]: 

 
Let us consider a large number of monochromatically vibrating resonator – 𝑁 of frequency 𝜈 

(per second), 𝑁′ of frequency 𝜈′, 𝑁′′ of frequency 𝜈′′, ..., with all 𝑁 large number – which are 

at large distances apart and are enclosed in a diathermic medium with light velocity 𝑐 and 

bounded by reflecting walls. Let the system contain a certain amount of energy, the total energy 

𝐸𝑡 (erg) which is present partly in the medium as travelling radiation and partly in the resonators 

as vibrational energy. The question is how in a stationary state this energy is distributed over 

the vibrations of the resonator and over the various of the radiation present in the medium, and 

what will be the temperature of the total system… 

…we first of all consider the vibrations of the resonators and assign to them arbitrary definite 

energies, for instance, an energy 𝐸 to the 𝑁 resonators 𝜈, 𝐸′ to the 𝑁′ resonators 𝜈′,...  

…Dividing 𝐸 by 𝑁, 𝐸′ by 𝑁′,... we obtain the stationary value of the energy 𝑈𝜈, 𝑈𝜈
′ , 𝑈𝜈

′′... of a 

single resonator of each group, and thus also the spatial density of the corresponding radiation 

energy… 

 

As it sounds, Planck implied the average energy (4) of a resonator in a given resonator group 

is one and the same as the “corresponding radiation energy”. Thus, an actually present radiation 

mode should have a corresponding matter resonator. The number of radiation modes is the same 

as the number of matter resonators. 

On the other hand, (1) still gives the correct result, even as the factor 8𝜋𝜈2 𝑐3⁄  is considered 

as the number of all hypothetically possible radiation modes per unit volume of space per unit 

frequency range, not just actually present modes. This contradiction stems from the way the factor 

8𝜋𝜈2 𝑐3⁄  is derived in textbooks. Note, that (4) is obtained from fundamental quantum mechanical 

expression (3) in thermodynamic limit of a large number of oscillators present in a given mode. 

However, the expression 8𝜋𝜈2 𝑐3⁄  for the number of modes per unit volume per unit frequency 

range is obtained with purely classical approach, by treating each mode as a standing wave 

enclosed in a limited volume with ideally conducting walls, so as to nullify the wave amplitude at 

the boundary. To combine an expression obtained from fundamentally quantum mechanical 

principles, with an expression obtained from purely classical prospective, into a single formula (1) 

is the inconsistency I wish to call out. Furthermore, the way the expression 8𝜋𝜈2 𝑐3⁄  is derived in 

textbooks [4, 5] ought to raise eyebrows, since it is based on completely improbable assumptions: 

1. that the radiation, e.g. cosmic background, can be considered as enclosed in a cavity 

2. that the enclosing cavity has ideal conductor walls so the wave amplitude is a mathematical 

zero at the boundary 

Both of these assumptions are crucial for considering the available phase space discrete, which is 

necessary for the textbook derivation of 8𝜋𝜈2 𝑐3⁄  factor. Even a miniscule deviation from ideal 

conductor walls of the cavity immediately breaks the discreteness of phase space, and effectively 

makes the number of hypothetically possible radiation modes of the same frequency infinite. Thus, 

the factor 8𝜋𝜈2 𝑐3⁄  in (2) would have to be derived from a different context, as I do below. 

A measurement of radiation intensity with e.g. a bolometer, is effectively the measurement of 

the energy contained in matter oscillators inside the sensitive element of the device. Consider an 
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oscillator immersed into radiation field. If the system oscillator+radiation is in a state 𝒖0 at 𝑡 = 0, 

the probability to find it in the same state at 𝑡 ≥ 0, from Schrödinger equation, is: 

𝑃(𝑡) = ∑ 𝑃𝑗 ∙

𝑗,𝑘

𝑃𝑘 ∙ 𝑐𝑜𝑠 (
𝐸𝑗 − 𝐸𝑘

ℏ
𝑡) , where 𝑃𝑘 = |⟨𝒇𝑘|𝒖0⟩|2  (5) 

, where 𝒇𝑘, 𝐸𝑘 are eigenstates and eigenvalues of 𝑯-matrix. From (5), it follows, 𝜕𝑃 𝜕𝑡|𝑡=0⁄ = 0, 

i.e. the transition rate is zero. This result is referred to as quantum Zeno effect [10, 11]. It is the 

result of a coherent coupling (entanglement) between the oscillator and radiation modes, 

manifested by the phase relationship between superposed eigenstates of 𝑯-matrix in (5): 

𝜑𝑗 − 𝜑𝑘 =
𝐸𝑗 − 𝐸𝑘

ℏ
𝑡 (6) 

From (5), the transition rate is also zero in a more general case, if phase difference 𝜑𝑗 − 𝜑𝑘 

between 𝒇-states is any analytic function of time, i.e. if phases of 𝒇-states predictably relate to 

each other. In order for the transition to happen, the superposed eigenstates of 𝑯-matrix must 

undergo de-coherence, i.e. the phase relation (6) must be broken. There are various mechanisms 

which may cause de-coherence of 𝒇-states, such as: 

1. Rayleigh scattering [12, 13] 

2. Brownian motion [14, 15] 

3. Dispersive media [16, 17] 

4. Recombination of electron-hole pairs in semiconductors [18] 

It is not in the scope of this paper to consider de-coherence mechanisms in detail. Rather, I shall 

pursue a generic approach. I write (5) in a more general form, given (6) may no longer hold: 

𝑃(𝑡) = ∑ 𝑃𝑗 ∙

𝑗,𝑘

𝑃𝑘 ∙ 𝑐𝑜𝑠(𝜑𝑗 − 𝜑𝑘) , where 𝑃𝑘 = |⟨𝒇𝑘|𝒖0⟩|2  (7) 

The probability distribution 𝑃𝑘 in (7) for an oscillator (e.g. a dipole) over radiation modes 𝒇𝑘 

is well known (see e.g. dipole radiation). For this discussion it is only important that the number 

𝐾 of radiation modes within a given spectral width ∆𝜈 is large, so I can later take the limit 𝐾 → ∞. 

If the matter is in equilibrium with radiation, a transition changes oscillator energy by ∆ℰ = ±ℎ𝜈 

with equal probability in either direction. In between transitions, the phase difference 𝜑𝑗 − 𝜑𝑘 

evolves according to (6). The case of ∆ℰ = ±𝑛ℎ𝜈, where 𝑛 > 1, is equivalent to 𝑛 consecutive 

transitions in the same direction. In time 𝑡, the phase 𝜑 of each of the 𝒇-states in (7) undergoes a 

total number 𝑡 𝜏⁄  of positive and negative increments with equal probability 1/2.  Here, 𝜏 has a 

meaning of mean free time between transitions, i.e. the de-coherence time. The resultant 

increments are binomially distributed around mean 𝑡 (2𝜏)⁄ , with variance of binomial distribution 

𝜎2 = 𝑝 ∙ (1 − 𝑝) ∙ 𝑡 𝜏⁄ = 𝑡 (4𝜏)⁄ . The variance in phase 𝜎𝜑
2 = (𝜔𝜏)2𝜎2 = 𝜔2𝜏 ∙ 𝑡 4⁄ . The 

variance in phase difference is 𝜎∆𝜑
2 = 4𝜎𝜑

2 = 𝜔2𝜏 ∙ 𝑡. Here 𝜔 = 2𝜋𝜈 is the angular frequency. 

Figure 1 shows numeric simulation of (7), with binomially distributed phases 𝜑. The 

calculation established the following: 

 
𝑃(𝑡) =

𝐾 + 𝐾 ∙ (𝐾 − 1) ∙ 𝑒𝑥𝑝(−𝜔2 ∙ 𝜏 ∙ 𝑡)

𝐾2
 (8) 

The result (8) is interesting in a couple of ways. First, if 𝐾 = 1, then 𝑃(𝑡) ≡ 1, i.e. no transition 

can occur if oscillator couples into a single radiation mode. This result can be obtained directly 

from (5), since 𝐾 = 1 means the initial state 𝒖0 is also the eigenstate of 𝑯-matrix. Second, (8) 

shows exponential decay over time, which is the characteristic feature of classical behavior, the 

result of the de-coherence of radiation modes. In the limit 𝑡 → ∞, 𝑃(𝑡) → 1 𝐾⁄ , i.e. the probability 

https://en.wikipedia.org/wiki/Dipole#Dipole_radiation


spreads equally among radiation modes. That is the consequence of simplification 𝑃𝑘 = 1 𝐾⁄  ∀ 𝑘. 

A more accurate calculation may require a dipole radiation distribution to be used for 𝑃𝑘 in (7), a 

subject for a separate exercise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From (8), in the limit of a large number of modes (𝐾 → ∞), the transition rate is: 

 𝜕𝑃(𝑡)

𝜕𝑡
|

𝑡=0

= −𝜔2 ∙ 𝜏 (9) 

To evaluate the de-coherence time 𝜏 in (9), I consider a matter oscillator, formed when a set of 

elements (e.g. electron-hole pairs) on the surface of the detector entangle through some medium 

(e.g. electromagnetic field). An analog of such entanglement is a Cooper pair in superconductor, 

mediated by phonon interaction. The surface area which encloses a set of elements in entangled 

𝑃(𝑡) 

Figure 1 

Blue line is a calculation of (7), with binomially distributed phases 𝜑𝑘. The 

red line is a plot of formula (8). The graphs were calculated using GNU Octave 

code http://phystech.com/download/ph2.m with the following parameters: 

• 𝐾 = 100 

• 𝜏 = 0.01 

• 𝜔 = 8 

• 𝑃𝑘 = 1 𝐾⁄  ∀ 𝑘 

The blue curve smooths out and becomes identical with red curve as  𝐾 → ∞. 

 

𝑡 
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state is limited by the coherence radius 𝑟 = 2𝜋 𝑐 (𝜅∆𝜔)⁄ , where 𝑐 is the speed of light, 𝜅 is the 

refractive index of the material, and ∆𝜔 [rad/s] is the spread in internal transition frequencies of 

the entangled elements. If 𝜌 is the number of entangled elements per unit surface area of the 

detector; 𝐷𝜔 the dimensionless scattering rate; 𝐷𝜔∆𝜔 the scattering frequency within ∆𝜔 spectral 

width, then, the de-coherence time 𝜏 of the oscillator is: 

𝜏 = (𝜋𝑟2𝜌𝐷𝜔∆𝜔)−1 = (𝜋 (
2𝜋𝑐

𝜅∆𝜔
)

2

𝜌𝐷𝜔∆𝜔)

−1

=
𝜅2

4𝜋3𝑐2𝜌𝐷𝜔
∆𝜔 (10) 

, and the transition rate: 
𝜕𝑃(𝑡)

𝜕𝑡
|

𝑡=0

= −
𝜔2𝜅2

4𝜋3𝑐2𝜌𝐷𝜔
∆𝜔 (11) 

In equilibrium, the loss of a number of oscillators in a particular mode is compensated by the 

radiation-stimulated induction into the mode of the same number of oscillators. The energy balance 

equation is 

𝑅𝜔 ∙ 𝐵𝜔 ∙ ∆𝜔 + 𝜉 ∙ (𝑈𝜔 −
ℏ𝜔

2
) ∙

𝜕𝑃(𝑡)

𝜕𝑡
|

𝑡=0

= 0 (12) 

, where 𝐵𝜔 is the spectral radiance of incident radiation; 𝑅𝜔 is the efficiency of the conversion of 

the incident radiation into the oscillator energy; 𝜉 is the number of oscillators per unit surface area 

of the detector. I have to subtract zero-point energy term ℏ𝜔 2⁄  from the ensemble-average energy 

𝑈𝜔 in (12), because an oscillator cannot lose energy in the ground state. Combining (12) with (11): 

 

𝑅𝜔 ∙ 𝐵𝜔 =
𝜉 ∙ 𝜅2

𝜌 ∙ 𝐷𝜔
[
ℏ𝜔3 (4𝜋3𝑐2)⁄

exp (
ℏ𝜔
𝑘𝑇

) − 1
] (13) 

The term in square brackets can be considered as pertaining to the incident radiation, and 

parameters outside the brackets as properties of the detector. Then, (13) can be split into formula 

for the spectral radiance, and formula for the detector efficiency: 

 
𝐵𝜔 =

ℏ𝜔3 (4𝜋3𝑐2)⁄

exp (
ℏ𝜔
𝑘𝑇

) − 1
 (14) 

𝑅𝜔 =
𝜉 ∙ 𝜅2

𝜌 ∙ 𝐷𝜔
=

𝜅2

𝜂 ∙ 𝐷𝜔
  (15) 

, where 𝜂 = 𝜌 𝜉⁄  can be interpreted as the number of entangled elements making up one oscillator. 

The Planck’s formula (1) for the spectral energy density readily follows from (14): 

 

𝑢𝜔 =
4𝜋

𝑐
𝐵𝜔 =

ℏ𝜔3 (𝜋2𝑐3)⁄

exp (
ℏ𝜔
𝑘𝑇

) − 1
 (16) 

 

𝑢𝜈 = 2𝜋 ∙ 𝑢𝜔 =
8𝜋ℎ𝜈3 𝑐3⁄

exp (
ℎ𝜈
𝑘𝑇

) − 1
 (17) 

I have shown the Planck’s law follows from consideration of radiation and matter oscillators as 

parts of the same quantum system. I have argued against considering radiation as an entity which 

exists and possesses properties independent of the matter it interacts with. 
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