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Abstract 
I prove teleportation protocol for an arbitrary qubit state can be implemented with 

one bit of information transmitted via classical channel, per preparation + measurement 

cycle. I show how teleportation protocol can be implemented in a classical setting. I 

discuss the contextual meaning of teleportation 

 

Entanglement and teleportation have become popular buzzwords, generating interest in 

scientific community, as well as industry, and government, with promise of secure communication 

[1], and quantum computing capabilities [2]. 

Teleportation relies on a shared two-qubit entangled ancilla state between the sender (Alice), 

and the receiver (Bob). The subject of teleportation is the third qubit in unknown state, which Alice 

wants to teleport to Bob. 

As entanglement is deemed a purely quantum feature, the teleportation is assumed to be only 

possible via quantum channel. The publicized teleportation schemes [3, 2] involve unitary 

transformations, a measurement by Alice in 4𝐷 basis on her two accessible qubits, and two bits of 

information transmitted by Alice to Bob via classical channel. All that effort is in order for Bob to 

reproduce the measurement result sample which would have been obtained by direct 

measurements of third qubit. 

 

As an improvement over publicized teleportation schemes, I present teleportation protocol 

which only involves one projection transformation, one measurement by Alice, and 1 𝑏𝑖𝑡 of 

information transmitted by Alice to Bob via classical channel. I show that to the same end result, 

teleportation can be realized in a classical setting. 

The teleportation protocol is based on Alice and Bob sharing entangled ancilla state 𝜓𝐴𝐵 of 

two qubits: 𝜓𝐴𝐵 = ∑𝜌𝑖𝑗|𝑖𝐴⟩|𝑗𝐵⟩ ; 𝑖, 𝑗 = {0,1}; ∑ 𝜌𝑖𝑗
† 𝜌𝑖𝑗 = 1. The subscripts 𝐴, 𝐵 designate qubits 

accessible respectively to Alice and Bob. Alice and Bob are free to choose the shared ancilla state. 

A third qubit, in unknown state  

 
𝜒𝐴 = α|0𝐴⟩ + 𝛽|1𝐴⟩ (1) 

is given to Alice to teleport to Bob. In standard protocol, two unitary transformations (𝑪𝑵𝑶𝑻-gate 

+ 𝑯-gate) [2], and two measurements are required for Alice to perform, and 2 𝑏𝑖𝑡𝑠 of information 

to be transmitted by Alice to Bob via classical channel per preparation + measurement cycle 

(PMC), in order for Bob to reconstruct the measurement result sample for the third qubit. Alice 

performs her measurements in cardinality 𝑀 = 4 basis, the results of which require log2 4 =
2 𝑏𝑖𝑡𝑠, to be passed to Bob, per PMC. There is, however, a redundancy in traditional protocol, as 

Bob’s measurement is performed in cardinality 𝑀 = 2 basis, so Alice’s 4𝐷 Hilbert space, one way 

or another, gets projected into Bob’s 2𝐷 space. In the proposed protocol this redundancy is 

eliminated. 

To start, Alice and Bob choose the usual, maximally entangled shared ancilla state 𝜓𝐴𝐵: 

𝜓𝐴𝐵 =
|0𝐴1𝐵⟩ + |1𝐴0𝐵⟩

√2
 (2) 



The proposed teleportation protocol is implemented in PMC steps as follows: 

 

1. Preparation of the standard product state: 

Ψ𝐴𝐵 = 𝜒𝐴 ⊗ 𝜓𝐴𝐵 = (α|0𝐴⟩ + 𝛽|1𝐴⟩) ⊗
|0𝐴1𝐵⟩ + |1𝐴0𝐵⟩

√2

=
|0𝐴0𝐴⟩

√2
α|1𝐵⟩ +

|1𝐴1𝐴⟩

√2
𝛽|0𝐵⟩ +

|0𝐴1𝐴⟩

√2
α|0𝐵⟩ +

|1𝐴0𝐴⟩

√2
𝛽|1𝐵⟩ 

(3) 

Next, Alice wants to use observation basis of cardinality 𝑀 = 2. She also wants the basis to be 

transformed, so the state of Bob’s qubit would look separated and unitarily equivalent to the state 

of third qubit. 

 

2. Alice transforms to cardinality 𝑀 = 2 observation basis, with basis vectors: 

|𝑥𝐴⟩ =
|0𝐴0𝐴⟩ + |1𝐴1𝐴⟩

√2
 

|𝑦𝐴⟩ =
|0𝐴1𝐴⟩ + |1𝐴0𝐴⟩

√2
 

(4) 

Transformation of observation basis is performed with projection operator 𝑭𝐴: 

𝑭𝐴 = √2|𝑥𝐴⟩⟨𝑦𝐴| + √2|𝑦𝐴⟩⟨𝑥𝐴|

=
(|0𝐴0𝐴⟩ + |1𝐴1𝐴⟩)(⟨1𝐴0𝐴| + ⟨0𝐴1𝐴|)

√2

+
(|0𝐴1𝐴⟩ + |1𝐴0𝐴⟩)(⟨0𝐴0𝐴| + ⟨1𝐴1𝐴|)

√2
 

(5) 

Applying operator (5) to (3) results in: 

𝑭𝐴Ψ𝐴𝐵 =
|𝑥𝐴⟩(α|0𝐵⟩ + 𝛽|1𝐵⟩)

√2
+

|𝑦𝐴⟩(α|1𝐵⟩ + 𝛽|0𝐵⟩)

√2
 (6) 

In (6), the Alice’s qubits are in orthogonal states 𝑥𝐴 and 𝑦𝐴, and Bob’s qubit is in a separated 

superposition of state (1), and unitarily equivalent to (1) state α|1𝐵⟩ + 𝛽|0𝐵⟩. 
  

3. Alice performs the measurement of accessible to her qubits of state (6). With equal probability 

Alice finds accessible to her qubits in state 𝑥𝐴, if both qubits are the same, or state 𝑦𝐴, if qubits 

are different. 

 

4. If Alice finds her qubits to be identical, i.e. in 𝑥𝐴 state, she sends Bob a single bit with value 0, 

meaning he has to measure his qubit without any transformation. If Alice finds her qubits in 

𝑦𝐴 state, she sends Bob a single bit with value 1, meaning Bob has to apply 𝑿-gate on his qubit, 

swapping 0 and 1, before taking measurement. The 𝑿-gate applied to α|1𝐵⟩ + 𝛽|0𝐵⟩ turns it 

into target state (1). 



Repeating PMC steps 1-4 will let Bob obtain the same measurement result sample, as if he 

performed measurement on state (1), which, in minds of many authors, means the state (1) has 

been successfully teleported by Alice to Bob. The experimenters on quantum teleportation [4] 

reported success when measurement result samples matched with fidelity 0.8. 

 

I shall now show the Bell-type entanglement and associated teleportation protocol can be 

implemented in purely classical setting, to achieve the same result as in quantum teleportation 

described above. 

 

Bob invites Alice for a dinner and promises to entertain her with teleportation experiment. Bob 

prepares two pairs of identical matching gloves, and four black boxes, one per glove, and a mirror. 

Bob puts four gloves into four boxes, one glove per box, and closes boxes. Once Alice shows up, 

Bob gives boxes to Alice. He asks Alice to randomly shuffle boxes, behind his back, without 

looking into them, and then give one box to him. Thus, Bob gets one box, and Alice keeps three 

boxes. Bob asks Alice to put one of her three boxes aside. He then says, that he can tell which 

glove is in that box, if Alice opens her remaining two boxes and tells Bob only one thing: if the 

gloves she sees make a pair or not (i.e. if they are matching left and right gloves). If Alice tells 

Bob, she found left and right gloves in her remaining two boxes, Bob opens his box while looking 

into mirror image of its content (i.e. using 𝒁-gate transformation), and records the result, i.e. if he 

sees left or right glove in the mirror. The mirror image of the left glove is the right glove, and vice 

versa. If Alice tells Bob she sees two identical gloves in her two boxes, then Bob looks straight 

into his box and records what he sees. Surely enough, whatever result Bob records matches the 

content of the box which Alice puts aside, every time they repeat the experiment. 

 

Similar protocol can be used to teleport a secret binary string 𝜒 of 𝑁 𝑏𝑖𝑡𝑠. This protocol is 

known as Vernam-Mauborgne one-time pad. In this scenario, Bob generates a random string 𝜓 of 

𝑁 𝑏𝑖𝑡𝑠 and secretly shares it with Alice, thus establishing a shared ancilla state. In order to teleport 

the string 𝜒, Alice performs binary ⊕ (XOR) operation between string 𝜒 and her copy of the string 

𝜓. Then, Alice reads bits of  𝜓 ⊕ 𝜒 string one by one. If Alice reads value 0 she tells Bob to read 

his bit as is. If Alice reads 1 she tells Bob to swap his bit into opposite. Even if Eve eavesdrops on 

Alice’s communication to Bob, she would not be able to reconstruct secret string 𝜒 without having 

a copy of string 𝜓. The ancilla string 𝜓, just like the shared entangled state (2), serves as a 

codebook. The actual messages are transmitted via classical channel, but decrypted using shared 

codebook. 

 

The thought experiments above prompt some legitimate questions as for the meaning of 

quantum teleportation and its potential usefulness, given the same results can be achieved in 

classical settings. Similar questions have been asked before [5]. For one thing, in any teleportation 

scheme, only 1 𝑏𝑖𝑡 of information about target state (1) is obtained by Bob per 1 preparation + 

measurement cycle. It requires the same 1 𝑏𝑖𝑡 of information (or 2 𝑏𝑖𝑡𝑠, if using publicized 

teleportation schemes), to be transmitted by Alice to Bob via classical channel. So, it seems nothing 

beyond what is transmitted via classical channel gets received by Bob. 
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