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Abstract 
I critically analyze the fidelity measure used for state estimation. I discuss 

the impossibility of complete determination. As an alternative to traditional 

fidelity, I suggest a figure of merit called confidence in the knowledge of an 

arbitrary state 

 

The question of how well one can determine the state of an object by performing measurement 

is of rather fundamental nature, laying at the base of most scientific disciplines. Here I shall provide 

a general approach to evaluation of degree of confidence in the knowledge of an arbitrary object, 

based on the fact that any measurement and associated knowledge is represented by a sample of 

events (symbols), each symbol being the outcome of a measurement event. 

Consider the measurements are done in preparation + measurement cycles (PMC). The input 

to each PMC is 𝐚, and the output is one of output events {𝒃𝑖}, 1 ≤ 𝑖 ≤ 𝑑; where 𝑑 is the dimension 

of measurement basis. If PMC is repeated 𝑁 times, the full input is represented by the tensor 

product 𝚨 = 𝒂⊗𝑁, and the output by 𝚩 = 𝒃1
⊗𝑛1 ⊗ 𝒃2

⊗𝑛2 … ⊗ 𝒃𝑑
⊗𝑛𝑑, where 𝑁 = ∑ 𝑛𝑖

𝑑
𝑖=1 . Two 

questions can be asked: 

1. how close is 𝚩 to 𝐀, or, alternatively, how reliably one can determine 𝚨 from 𝚩 

2. what is the probability of 𝚩 given 𝚨 

A figure of merit, called Uhlmann-Jozsa fidelity [1, 2] has been defined to answer question 1: 

 ℱ𝑈 = (𝑡𝑟 (√√𝝆𝑩𝝆𝑨√𝝆𝑩))

2

 (1) 

, where 𝝆𝑨, 𝝆𝑩 are density matrices of input 𝚨, and of output 𝚩. If 𝚨 or 𝚩 is pure, (1) becomes:  

ℱ = 𝑡𝑟(𝝆𝑩𝝆𝑨) (2) 

, which is a case of an expression for the expectation value of an operator 𝐗: 

 〈𝑿〉 = 𝑡𝑟(𝑿𝝆𝑨) (3) 

, with 𝝆𝑩 in (2) being the probability POVM. Expression (2) is Born rule, postulated [3] to be the 

answer to question 2. When the same measure is used as the answer to both questions, it leads to 

some issues I discuss below. 

The proposition the fidelity can be used for determination [4] of 𝚨 from 𝚩 lays at the foundation 

of several technologies, such as quantum state tomography (QST), quantum process tomography 

(QPT) [5]. Due to non-linearity of (1), its practical use for QST is nearly impossible. Linear 

inversion of (2), or of alternative fidelity measures [6], is used in all situations, even when both 

inputs and outputs are mixtures [4]. Even as (1) is touted as a measure of closeness between 𝝆𝑨 

and 𝝆𝑩, specifically for mixtures, (1) does not make sense from standpoint of closeness of states. 

For example, if 𝝆𝑨 = 𝝆𝑩 = (|0⟩⟨0| + |1⟩⟨1|) 2⁄  then ℱ𝑈 = 1. However, it should be 1 2⁄ . The 

reason is, output 𝝆𝑩 = (|0⟩⟨0| + |1⟩⟨1|) 2⁄  is a mixture with no correlation to input. Thus, the 

output 𝒃 is either |0⟩ or |1⟩ with 1 2⁄  probability, independent of the input 𝒂. Hence, ℱ𝑈 is not the 

measure of closeness of states, but a measure of closeness of density matrices. For mixtures, 

density matrix is not synonymous with state but rather with distribution of states. From this 



prospective, ℱ𝑈 = 1 makes sense, because 𝝆𝑨 = 𝝆𝑩. There is an example given in [6] of 𝝆𝑩 =
(|0⟩⟨0| + |1⟩⟨1|) 2⁄  and 𝝆𝑨=|𝜓⟩⟨𝜓|, when (2) gives ℱ = 1 2⁄ . In authors’ opinion, that is 

incorrect. However, that is the expected outcome of the measurement. To assume the Uhlmann-

Jozsa fidelity (1) provides the figure of merit for closeness of states means accepting possibility of 

(1) telling 𝐚 is the same as 𝐛, while measurements show 𝒂 is different from 𝐛 half the times. I shall 

conclude, from standpoint of closeness of states, fidelity (2) is the correct measure. 

Even as (2) is the correct measure of closeness of states, its use in QST for determination of 

𝝆𝑨 is not faultless, for the following reasons: 

1. It is impossible to determine a state in a single-device measurement due to no-cloning 

theorem [7, 8]. Therefore, (2) implies an ensemble-average. Hence, 𝝆𝑨 calculated in QST 

is a mixture, even if the input 𝑨 is pure. For evidence, the calculated in QST density 

matrices invariably have multiple non-zero eigenvalues, while pure state density matrix 

would only have 1 non-zero eigenvalue equal to 1 

2. The measure (2) itself cannot be precisely determined in a finite number of measurements, 

resulting in uncertainty relation formulated below 

The optimal state evaluation involves finding a measurement basis {𝒃𝑖} which maximizes (2). 

From basic geometric consideration it is clear, that in optimal basis [9]: 

ℱ𝑚𝑎𝑥(𝑁𝑨, 𝑁𝐵, 𝑑) = cos2(𝜑𝑨,𝑩
𝑚𝑖𝑛) =

𝑑[𝝆𝑨]

𝑑[𝝆𝑩]
 (4) 

, where 𝜑𝑨,𝑩
𝑚𝑖𝑛 is the minimum possible Bures [10] angle between 𝚨 and 𝚩; 𝑑[𝝆𝑨] and 𝑑[𝝆𝑩] are 

dimensions [9] of the input and output vector spaces; 𝑑[𝝆𝑨] and 𝑑[𝝆𝑩] are equal to the number of 

ways to distribute 𝑁𝑨 and 𝑁𝑩 identical balls into 𝑑 distinguishable cells: 

𝑑[𝜌𝑨] = (
𝑁𝑨 + 𝑑 − 1

𝑁𝑨
) ; 𝑑[𝜌𝑩] = (

𝑁𝑩 + 𝑑 − 1
𝑁𝑩

) (5) 

, where 𝑁𝑨 is the number of input events, and 𝑁𝑩 is the number of output events (measurements), 

𝑁𝑩 ≥ 𝑁𝑨. The difference 𝑁𝑩 − 𝑁𝑨 is the number of future measurements, given already performed 

𝑁𝑨 PMCs. The expression (4) gives the maximum probability that in future ∆𝑁 = 𝑁𝑩 − 𝑁𝑨 

measurements the result will be the same as in already performed 𝑁𝑨 measurements. From (4, 5): 

ℱ𝑚𝑎𝑥(𝑁𝐴; 𝑁𝑩 = 𝑁𝐴 + 1; 𝑑) =
𝑁𝑨 + 1

𝑁𝑨 + 𝑑
 (6) 

ℱ𝑚𝑎𝑥(𝑁𝐴 → ∞; 𝑁𝐵 → ∞; 𝑑) = (
𝑁𝑨

𝑁𝐵
)

𝑑−1

 (7) 

ℱ𝑚𝑎𝑥(𝑁𝑩 = 2; 𝑁𝐴 = 1; 𝑑 = 2) =
2

3
 (8) 

Defining (∆ℱ)𝑚𝑖𝑛 = (1 − ℱ𝑚𝑎𝑥(𝑁𝐴; 𝑁𝑩 = 𝑁𝐴 + 1; 𝑑)) as the minimum possible uncertainty in  

state determination, it follows: 
(∆ℱ)𝑚𝑖𝑛 ≥

𝑑 − 1

𝑁𝑨 + 𝑑
 (9) 

The expression (4), being sensible as probability measure, has an issue from standpoint of fidelity 

of state determination: the fidelity depends on number of measurements 𝑁𝑨 already performed, but 

it cannot depend on the number of future measurements; e.g. (7) does not make sense. This is a 



conceptual issue of identifying fidelity of state determination with measurement probability (2). 

In practice [11], the fidelity of optimal state estimation (4) is only used with 𝑁𝑩 = 𝑁𝐴 + 1. 

To resolve the conceptual issue, I propose an alternative to fidelity measure, which I call the 

confidence in the knowledge of state. The concept of knowledge is based on entropy as the measure 

of missing information. The entropy is the amount of unknown. The maximum entropy state, i.e. 

equilibrium, has zero information content, i.e. zero known. Thus, the amount of known, i.e. the 

knowledge, equals the difference between entropy of equilibrium, and the entropy of the estimated 

state. From here I obtain the expression for knowledge [12]: 

ℒ((𝑛𝑖); 𝑁) = 𝐻Ω
𝑒𝑞(𝑁) − 𝐻Ω((𝑛𝑖);  𝑁) (10) 

, where 
𝐻Ω((𝑛𝑖);  𝑁) = ln Γ(𝑁 + 1) − ∑ ln Γ(𝑛𝑖 + 1)

1≤𝑖≤𝑑

 (11) 

𝐻Ω((𝑛𝑖);  𝑁) is Boltzmann’s entropy;  𝐻Ω
𝑒𝑞(𝑁) = 𝐻Ω((𝑛𝑖 = 𝑁 𝑑⁄ );  𝑁) is entropy of equilibrium. 

The knowledge obtained per measurement event is: 

ℰ((𝑛𝑖); 𝑁) = ℒ((𝑛𝑖); 𝑁) 𝑁⁄  (12) 

Knowledge (12) has its maximum for the given 𝑁 when 𝑛𝑗 = 𝑁; 𝑛𝑖 = 0 ∀ 𝑖 ≠ 𝑗: 

ℰ𝑚𝑎𝑥(𝑁) = ℰ ((𝑛𝑗 = 𝑁; 𝑛𝑖 = 0 ∀ 𝑖 ≠ 𝑗); 𝑁) =
𝐻Ω

𝑒𝑞(𝑁)

𝑁
 (13) 

ℰ𝑚𝑎𝑥(𝑁) grows with number of measurements 𝑁, toward limit: 

ℰ𝑚𝑎𝑥 = ℰ𝑚𝑎𝑥(𝑁 → ∞) = ln 𝑑 (14) 

As expected, ℰ𝑚𝑎𝑥 equals maximum per-event entropy, i.e. maximum Shannon’s 𝐻S entropy [13]. 

Once equipped with the notion of knowledge, I define the notion of confidence [12] as: 

𝛬((𝑛𝑖); 𝑁) =
ℰ((𝑛𝑖); 𝑁)

ℰ𝑚𝑎𝑥
=

ℰ((𝑛𝑖); 𝑁)

ln 𝑑
 (15) 

The fidelity measure (4) for optimal state estimation corresponds to maximum confidence 𝛬𝑚𝑎𝑥: 

𝛬𝑚𝑎𝑥(𝑁) = 𝛬 ((𝑛𝑗 = 𝑁; 𝑛𝑖 = 0 ∀ 𝑖 ≠ 𝑗); 𝑁) =
ℰ𝑚𝑎𝑥(𝑁)

ℰ𝑚𝑎𝑥
=

ℰ𝑚𝑎𝑥(𝑁)

ln 𝑑
 

0 ≤ 𝛬𝑚𝑎𝑥(𝑁) < 1 

(16) 

To summarize, the fidelity (2) is the probability of measurement outcome 𝚩 given input 𝑨. The 

fidelity (4) is the probability of measurement outcome 𝚩 given input 𝑨 in optimal state estimation. 

The knowledge (12) is the obtained information (in nats) about estimated state, per measurement 

event. The confidence (15) is the ratio of information obtained per measurement event to the 

maximum possible information per event, which could have been obtained under optimal state 

estimation with infinite number of measurements. 

I shall compare the confidence (16) to fidelity of optimal state estimation (4). Re-normalizing 

(4) to the same [0,1) domain as confidence, I obtain: 

ℱ𝑚𝑎𝑥
′ (𝑁𝑨, 𝑁𝐵, 𝑑) =

ℱ𝑚𝑎𝑥(𝑁𝑨, 𝑁𝐵, 𝑑) − ℱ𝑚𝑎𝑥(𝑁𝑨 = 0, 𝑁𝐵, 𝑑)

1 − ℱ𝑚𝑎𝑥(𝑁𝑨 = 0, 𝑁𝐵, 𝑑)
 

(17) 



The calculation of re-normalized fidelity (17) and confidence (16) vs number of input events 
(𝑁 = 𝑁𝑨) is presented on Figure 1, for varying ∆𝑁 = 𝑁𝑩 − 𝑁𝑨; and 𝑑 = 4 dimension of the 

measurement basis. The figure demonstrates the confidence (16) is close to fidelity (6) of optimal 

state estimation, i.e. when ∆𝑁 = 1. It also shows (4) loses its meaning of fidelity of optimal state 

estimation when ∆𝑁 > 1. I conclude the confidence (15, 16) provides the correct figure of merit 

for state estimation. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

Graphs of confidence (16) and fidelity (17) vs number of measurements 𝑁. 

 

Blue line: confidence (16). 

Red lines: re-normalized fidelity (17) for several values of ∆𝑁 = 𝑁𝑩 − 𝑁𝑨. 

The calculation was done for dimension of measurement basis 𝑑 = 4. 

The MATLAB code used for calculation: 

http://www.phystech.com/download/fidelity.m 

∆𝑁 = 1 

∆𝑁 = 3 

∆𝑁 = 7 

http://www.phystech.com/download/fidelity.m
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